Prosthecobacter fluviatilis sp. nov., which lacks the bacterial tubulin btubA and btubB genes

Minoru Takeda,1 Akiko Yoneya,1 Yuichi Miyazaki,1 Keiko Kondo,1 Hiroko Makita,1 Masashi Kondoh,2 Ichiro Suzuki1 and Jun-ichi Koizumi1

1Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
2Instrumental Analysis Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan

Leptothrix cholodnii is a sheathed bacterium often found in metal-rich and oligotrophic aquatic environments. A bacterial strain that is able to degrade the NaOH-treated sheath of L. cholodnii was isolated. The isolate was a Gram-negative, aerobic and prosthetcate bacterium. The optimum growth temperature and pH were 30 °C and pH 7.0, respectively. The DNA G+C content was 62.9 mol%. The major respiratory quinone was MK-6. A phylogenetic analysis based on the 16S rRNA gene indicated that the isolate is a member of the genus Prosthecobacter. The nearest relative was the type strain of Prosthecobacter vanneervenii, with a similarity of 97.1 %. However, the isolate does not possess the bacterial tubulin genes btubA and btubB, unique to known species of the genus Prosthecobacter. It is proposed that the isolate represents a novel species, Prosthecobacter fluviatilis sp. nov. The type strain is HAQ-1T (=JCM 14805T =KACC 12649T =KCTC 22182T).

Members of the Sphaerotilus–Leptothrix group are aquatic filamentous bacteria that are able to oxidize metal ions (Eikelboom, 1975; van Veen et al., 1978) and play a role in biomineralization (Ghiorse & Ehrlich, 1992). Their filamentous growth is accomplished by the formation of a sheath, a tube-like extracellular structure in which cells are enclosed, forming a filament. Insoluble metal oxides generated by this group of bacteria are not accumulated directly on the cell surface, but are deposited on the sheath (van Veen et al., 1978), possibly allowing steady cell division. The sheaths of the Sphaerotilus–Leptothrix group are formed by association of mucopolysaccharide modified with a cysteine-rich peptide and probably comprise a novel category of structural glycoconjugates (Emerson & Ghiorse, 1993; Makita et al., 2006; Takeda et al., 1998, 2003, 2005). To investigate the chemical structure of a complicated structural macromolecule, an enzyme is desired that degrades the macromolecule specifically, such as lysozyme for peptidoglycans. A degrading enzyme desirable that degrades the macromolecule specifically, such as lysozyme for peptidoglycans. A degrading enzyme is generated by this group of bacteria are not accumulated until the pH of the solution reached about 6. The solution was neutralized with phosphoric acid, passed through a glass filter and dialysed against a 0.1 M NaHCO3 solution. To the dialysate, a saturating amount of NaHCO3 was added and then acetic anhydride was slowly added until the pH of the solution reached about 6. The solution

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain HAQ-1T is AB305640.

A graph showing growth of strain HAQ-1T on mucopolysaccharide and figures showing the positions of PCR primers specific for the btubA and btubB genes are available as supplementary material with the online version of this paper.
was passed through a column (2.5 × 22 cm) packed with AG50W-X8 resin (H+ form; Bio-Rad) and the eluate was dialysed against distilled water. The dialysate was finally lyophilized to recover the N-acetylated mucopolysaccharide (25–30 mg). The composition of the modified screening medium for isolation of microbes that utilize the N-acetylated mucopolysaccharide was the same as that of the original screening medium described above except that the sheath material was replaced with the N-acetylated mucopolysaccharide. A culture supplemented with river water collected from the Yamada River (Munakata, Fukuoka, Japan) became turbid at 25 °C within 2 months. After subculturing three times with the modified screening medium, colony isolation was carried out with plates of the same medium (1.5 % agar) at 25 °C. Each colony formed on the plates was transferred to liquid medium and incubated at 25 °C. One of the cultures became turbid within 1 month and the isolate was designated strain HAQ-1T. More rapid growth was observed, and degradation of the N-acetylated mucopolysaccharide was confirmed, in a medium supplemented with soytone peptone as the nitrogen source (Supplementary Fig. S1, available in IJSEM Online). However, strain HAQ-1T could not grow on the original screening medium.

When strain HAQ-1T was cultured aerobically in a complex medium (MMB medium; Staley & Mandel, 1973) at 30 °C for 3 days, straight, fusiform cells with prosthecae at one pole were observed (Fig. 1a). Cell division occurred at the non-prosthecate pole (Fig. 1a). Cells were 0.3–0.7 μm wide and 1.8–8 μm long (Fig. 1). The cells lacked flagella and were non-motile. Spores were not formed. These features are typical for the genus Prosthecobacter (Staley et al., 1976). Cells of strain HAQ-1T tended to attach to each other and to form cell clumps (Fig. 1b), different from known Prosthecobacter strains (Staley et al., 1976). It is likely that the expanded fibrous material becomes interlaced to bind the adjoining cells (Fig. 1a). Gram-staining was negative using Favour-G reagents (Nussui Pharmaceutical). Anaerobic growth in MMB medium at 30 °C was tested using a BBL GasPack pouch (Becton Dickinson), and no growth was observed within 2 months. Colonies formed on solidified MMB medium were pale yellow, convex and opaque.

For determination of the effect of pH on growth, the bacterium was cultured statically in MMB medium at various pHs (by addition of HCl or NaOH) at 30 °C for 4 days, and the optical density at 660 nm was then measured. Growth of strain HAQ-1T occurred at pH 4.5–8.1, with an optimum at pH 6.5–7.0. The effect of temperature was tested by static cultivation for 1 month in MMB medium at various temperatures. Growth was assessed by an increase in the optical density at 1–3 day intervals. The growth temperature range of strain HAQ-1T was 10–38 °C with an optimum at 30 °C. The doubling time at 30 °C was estimated to be 4.6 h by measuring the optical density at intervals of 4 h during shaking cultivation in MMB medium. These phenotypic properties are similar to those of other members of the genus Prosthecobacter. Cells grown on MMB agar plates at 30 °C for 3 days formed a few bubbles in 3 % (v/v) H2O2 solution, thus exhibiting a weak catalase activity. Oxidase activity was positive, because the cells oxidized p-phenylenediamine. The capacity to utilize various sugars was tested using defined DM medium (van Ert & Staley, 1971) as a basal medium according to the method of Staley et al. (1976). Utilization was judged by an increase in the turbidity of the cultures, with results given in the species description and in Table 1. The carbohydrate utilization pattern of strain HAQ-1T is useful in differentiating it from type strains of the genus Prosthecobacter.

Total DNA of strain HAQ-1T grown on MMB medium was prepared using a Genomic-Prep blood DNA isolation kit

Table 1. Carbohydrate utilization of strain HAQ-1T and type strains of Prosthecobacter species

<table>
<thead>
<tr>
<th>Carbohydrate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Rhamnose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Trehalose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Fructose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Raffinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Glycogen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-Glucosamine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Melibiose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

The G+C content of the DNA of strain HAQ-1T was estimated to be 62.9 mol% by the HPLC method (Takeda et al., 2002). This value is slightly higher than the range (54–61 mol%) determined for other members of the genus Prosthecobacter (Staley et al., 1976) and the family Verrucomicrobiaceae (Hedlund et al., 1997). Both ubiquinone and menaquinone were detected by TLC according to a previously described method (Takeda et al., 2004). The spot of ubiquinone on the TLC plate was faint. Menaquinone was recovered from the plate and was further purified by HPLC under the following conditions: column, COSMOSIL 5C18-MS-II (4.6 × 150 mm; Nacalai Tesque); temperature, ambient; eluent, methanol/isopropyl ether (75:25); flow rate, 1 ml min⁻¹; detection, A270. The predominant menaquinone was MK-6(H2), based on its retention time. Prosthecobacter strains are reported to contain both ubiquinone (not identified) and menaquinone [MK-6(H2)] as major quinones (Hedlund et al., 1996; Staley et al., 1976), supporting the assumption that strain HAQ-1T should be classified into the genus Prosthecobacter. Except for the G+C content, the major chemotaxonomic properties of strain HAQ-1T were similar to those of the genus Prosthecobacter (Staley et al., 1976). In addition, the cellular fatty acids were identified by GC-MS according to previously described methods (Takeda et al., 2004). The major cellular fatty acids of strain HAQ-1T were C₁₄:₀ (42.0%), C₁₆:₁ (17.7%), anteiso-C₁₅:₀ (9.7%), and iso-C₁₄:₀ (5.7%).

The genes btubA and btubB, which share high sequence identity with eukaryotic α- and β-tubulin genes, have been found previously in the genus Prosthecobacter and their expression has been confirmed in Prosthecobacter dejongeii (Jenkins et al., 2002). These genes are assumed to have been transferred from a eukaryotic cell by horizontal gene transfer (Schlieper et al., 2005). BtubA and BtubB potentially form filaments in a similar arrangement to αβ-tubulin (Schlieper et al., 2005; Sontag et al., 2005), and there is the possibility that these proteins contribute to the maintenance of the prothecate cell shape of Prosthecobacter strains (Sontag et al., 2005). However, the roles of these genes in Prosthecobacter strains have not yet been confirmed (Pilhofer et al., 2007). To elucidate whether strain HAQ-1T has btubA and btubB, PCR amplification of these genes was attempted using the primers and temperature program reported by Jenkins et al. (2002). Despite repeated trials, no products were obtained. For confirmation, other PCR primer sets (BTUAB-SF/BTUBA-SR for btubA; BTUBB-SF/BTUBB-SR for btubB) specific for btubA and btubB were newly designed on the basis of nucleotide sequences available from GenBank (Supplementary Figs S2 and S3). P. vanneervenii ATCC 700199T was grown in MMB medium at 25 °C for 3 days and its genomic DNA was prepared as described above as a positive control for the PCR assay. The desired PCR products were amplified from DNA of P. vanneervenii ATCC 700199T (Fig. 3). In contrast, no products were obtained from DNA of strain HAQ-1T (Fig. 3), indicating that strain HAQ-1T does not harbour btubA and btubB. These genes have probably been lost in some species during their evolution and are not essential for growth of
Prosthecobacter strains. Since other Prosthecobacter strains have btubA and btubB, the absence of these genes is a significant feature of strain HAQ-1T. The genetic and phenotypic features of strain HAQ-1T suggest that it represents a novel species of the genus *Prosthecobacter*. The name *Prosthecobacter fluidatilis* sp. nov. is now proposed. In order to include strain HAQ-1T in the genus *Prosthecobacter*, we also propose emended descriptions of the genus *Prosthecobacter* and the family *Verrucomicrobiaceae*.

Emended description of the family Verrucomicrobiaceae Ward-Rainey et al. 1996

The formal description remains as given by Hedlund et al. (1997) with the following modification. The G+C content of the DNA ranges from 54 to 63 mol%.

Emended description of the genus Prosthecobacter (ex Staley et al. 1976) Staley et al. 1980

The formal description remains as given by Staley et al. (1976) with the following modification. The G+C content of the DNA ranges from 54 to 63 mol%.

Description of Prosthecobacter fluidatilis sp. nov.

Prosthecobacter fluidatilis (flu.vi.at’l.i’s. L. masc. adj. fluidatilis of or belonging to a river).

Cells are fusiform (0.3–0.7 μm × 1.8–8 μm) and straight. Growth occurs under aerobic conditions. Cells grown on MMB medium occasionally form clumps. Colonies on MMB agar are pale yellow, convex and opaque. Growth occurs in the temperature range 10–38 °C, with optimum growth at 30 °C. Optimum growth occurs at pH 6.5–7.0. Ammonium salts are utilized as a nitrogen source. Vitamins are not required. The following carbon sources are utilized: D-glucose, D-galactose, D-mannose, sucrose, maltose, D-xyllose, cellobiose, D-ribose, N-acetyl-D-glucosamine and N-acetyl-D-galactosamine. The following carbon sources are not utilized: lactose, melibiose, L-rhamnose, trehalose, L-arabinose, D-fructose, raffinose, glycerogen, D-glucosamine, D-galactosamine and galacturonic acid. The G+C content of the DNA of the type strain is 62.9 mol%. The type strain does not appear to possess the bacterial tubulin genes btubA and btubB based on PCR data.

The type strain is HAQ-1T (=JCM 14805T =KACC 12649T =KCTC 22182T), isolated from river water.

References

