Rhodococcus kunmingensis sp. nov., an actinobacterium isolated from a rhizosphere soil

Yong-Xia Wang,1† Hai-Bin Wang,2† Yu-Qin Zhang,1,3 Li-Hua Xu,1 Cheng-Lin Jiang1 and Wen-Jun Li1

The Key Laboratory for Microbial Resources of the Ministry of Education, PR China, and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China

Zhejiang Hisun Group Co., Ltd, Taizhou, Zhejiang 318000, PR China

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China

†These authors contributed equally to this work.

The genus Rhodococcus was classified into the family Nocardiaceae of the suborder Corynebacterineae (Stackebrandt et al., 1997). With the emergence of molecular identification methods, particularly 16S rRNA gene sequencing, the classification of the rhodococci has been greatly improved. For example, members of the genus Rhodococcus have been assigned to four 16S rRNA subclades, represented by Rhodococcus equi, Rhodococcus rhodnii, Rhodococcus rhodochrous and Rhodococcus erythropolis (McMinn et al., 2000), and the discovery of novel Rhodococcus species has been greatly facilitated. At the time of writing, more than 40 species are recognized and these micro-organisms exhibit broad metabolic diversity. In this study, the taxonomic position of an actinobacterium was examined by using a polyphasic approach. On the basis of phenotypic, chemotaxonomic and genotypic characteristics, it is proposed that strain YIM 45607T represents a novel species of the genus Rhodococcus.

Strain YIM 45607T was isolated from a soil sample collected from the rhizosphere of Taxus chinensis in Kunming by the following method. Soil samples were air-dried for 7 days; 1 g soil was then suspended in 50 mM phosphate buffer (pH 7.0) containing 0.1% sodium cholate and incubated at 45°C for 1 h with vigorous shaking in order to disperse soil aggregates and restrain the growth of fast-growing bacteria. The soil–water suspension was centrifuged and 0.1 ml supernatant was resuspended in 9 ml of the same sterile buffer before being spread on humic acid-vitamins-gellan gum (HVG) medium (Suzuki et al., 1999) and incubated at 28°C for 30 days. The strain was cultivated on yeast extract-malt extract agar (ISP 2; Shirling & Gottlieb, 1966) and maintained as a glycerol suspension (20%, w/v) at −70°C.

To investigate its morphological properties, strain YIM 45607T was cultivated aerobically at 28°C on ISP 2. Cell morphology was examined by using light microscopy with a model BH-2 microscope (Olympus) and scanning electron microscopy (Philips XL30; ESEM-TMP). Growth on ISP 2, ISP 5 (Shirling & Gottlieb, 1966), trypticase soy agar (TSA; Difco) and nutrient agar was also evaluated. Colony colour was determined by comparison with colour chips from the ISCC-NBS colour chart standard samples (Kelly, 1964). The Gram reaction was tested using the non-staining method as described by Buck (1982).

Strain YIM 45607T formed smooth, circular, convex, opaque and pink-pigmented colonies with entire margins and a transparent zone surrounding the colony.
that varied in diameter from 0.35 to 1.2 mm on ISP 2 after 7 days of incubation at 28 °C. The cells were Gram-positive, non-spore-forming and non-motile. Light microscopy revealed that cells of strain YIM 45607T formed filaments or showed elementary branching at the early phase of growth (12 h) and fragmented into short rods during the exponential phase (24 h). Most cells appeared as cocci in stationary phase (64 h). Thus, the results confirmed that strain YIM 45607T had a rod–coccus cycle during its growth phase. The strain grew well on ISP 2 and TSA and grew weakly on ISP 5, but did not grow on nutrient agar.

Utilization of carbohydrates and organic acids was determined by using the methods described by Shirling & Gottlieb (1966). Decomposition of adenine, casein, hypoxanthine, tyrosine, urea and xanthine was examined by using the methods of Gordon et al. (1974). Decomposition of gelatin, elastin, aesculin and starch was examined by using the methods of Goodfellow & Pirouz (1982). Enzyme activity tests were performed using API ZYM test kits (bioMérieux). The results were evaluated after incubation at 28 °C for 48 h. Antibiotic susceptibility was examined as described by Groth et al. (2004) using antibiotic discs (Himedia). Growth at different temperatures, pH and NaCl concentrations was determined on ISP 2. Catalase activity was determined by assessing bubble production in 3 % (v/v) H2O2 and oxidase activity was determined using a 1 % (w/v) solution of tetramethyl-p-phenylenediamine (Kovacs, 1956).

The isolate was positive for the enzymes alkaline phosphatase, esterase C4, esterase lipase C8, lipase C14, N-acetyl-β-glucosaminidase, leucine arylamidase, α-glucosidase, β-glucosidase, naphthol-AS-BI-phosphohydrolase, β-glucoronidase, α-mannosidase and fucosidase and negative for acid phosphatase, cystine arylamidase, valine arylamidase, α-galactosidase, β-galactosidase, α-chymotrypsin and trypsin. The strain was resistant to clindamycin (2 µg), norfloxacin (10 µg) and trimethoprim (1.25 µg), but sensitive to amikacin (30 µg), amoxicillin (10 µg), ampicillin (10 µg), ciprofloxacin (5 µg), erythromycin (15 µg), gentamicin (10 µg), netilmicin (30 µg), penicillin G (10 IU), rifampicin (5 µg), tetracycline (30 µg) (weak), tobramycin (10 µg) and vancomycin (30 µg). The detailed differential phenotypic properties are listed in Table 1 and other phenotypic characteristics are presented in the species description.

The amino acid and sugar contents of cell walls were determined according to the procedures described by Staneck & Roberts (1974). Mycolic acids were extracted and analysed according to the protocol of Minnikin et al. (1975) with R. equi DSM 20307T as the reference strain. Polar lipids were extracted as described by Minnikin et al. (1979) and identified by two-dimensional TLC and

Table 1. Differentiating characteristics between strain YIM 45607T and its closest phylogenetic neighbours

<table>
<thead>
<tr>
<th>Strains: 1, YIM 45607T; 2, R. equi DSM 20307T; 3, R. opacus DSM 43205T; 4, R. wratislaviensis DSM 44107T; 5, R. triatoma DSM 44892T. All results are from this study except those for R. triatoma DSM 44892T (taken from Yassin, 2005). +, Positive; −, negative; w, weakly positive. All of the strains are positive for utilization of sodium citrate, glucose and acetate. All of the strains are negative for hydrolysis of casein, elastin and hypoxanthine.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td>Growth cycle*</td>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aesculin</td>
<td>Tyrosine</td>
<td>Urea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H–RC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H–RC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H–RC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>EB–RC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H–RC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Utilization as sole carbon source of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arabinose</td>
<td>Lactose</td>
<td>Mannitol</td>
<td>myo-Inositol</td>
<td>Raffinose</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

International Journal of Systematic and Evolutionary Microbiology 58
Strain YIM 45607T contained meso-diaminopimelic acid as the diagnostic diamino acid and arabinose and galactose in cell-wall hydrolysates (cell-wall chemotype IV sensu Lechevalier & Lechevalier, 1970). The non-diagnostic sugars ribose and glucose were also found in cell-wall hydrolysates. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside (phospholipid type II sensu Lechevalier et al., 1977). MK-8(H\textsubscript{2}) was the only menaquinone detected and mycolic acids were present which co-migrated with those of \textit{R. equi} DSM 20307T except for one band. The major fatty acids (>10\%) were \textit{C}\textsubscript{16:0} (44.0\%), \textit{C}\textsubscript{18:1}\textit{v} (25.9\%) and \textit{C}\textsubscript{16:0}\textit{7c} (10.2\%). All these chemotaxonomic markers support the assignment of strain YIM 45607T to the genus \textit{Rhodococcus}.

Genomic DNA extraction and PCR amplification of the 16S rRNA gene were performed as described by Li \textit{et al.} (2007). An almost-complete 16S rRNA gene sequence (1421 bp) of strain YIM 45607T was obtained and aligned with the 16S rRNA gene sequences of other \textit{Rhodococcus} species (obtained from GenBank/EMBL/DDBJ) by using CLUSTAL\textsubscript{X} (Thompson \textit{et al.}, 1997). Phylogenetic analysis was performed using the software package MEGA 3.1 (Kumar \textit{et al.}, 2004). Distances (using distance options according to Kimura’s two-parameter model; Kimura, 1983) were calculated and clustering was performed with the neighbour-joining method (Saitou & Nei, 1987). Bootstrap analysis (1000 resamplings) was used to evaluate the tree topology of the neighbour-joining data (Felsenstein, 1985).

Phylogenetic analysis showed that strain YIM 45607T formed a distinct subclade within the genus \textit{Rhodococcus} with \textit{R. equi} DSM 20307T (Fig. 1), and this result further confirmed the affiliation of strain YIM 45607T to the genus \textit{Rhodococcus}. The 16S rRNA gene sequence similarities of strain YIM 45607T to type strains of species of the genus \textit{Rhodococcus} with validly published names were below 97.0\% except those of \textit{Rhodococcus opacus}, \textit{R. wratislaviensis}, \textit{R. triatoma} and \textit{R. equi} (97.4, 97.6, 97.6 and 98.2\%, respectively). The G+C content of the genomic DNA was determined by HPLC according to Mesbah \textit{et al.} (1989) and a value of 64.9 mol\% was measured.

To determine whether strain YIM 45607T represents a distinct species of the genus \textit{Rhodococcus}, DNA–DNA hybridization was performed by applying the method of He \textit{et al.} (2005) with five replicates for each sample. Strain YIM 45607T displayed low DNA–DNA reassociation with

Description of \textit{Rhodococcus kunmingensis} sp. nov.

\textit{Rhodococcus kunmingensis} (kun.ming.en’sis. N.L. masc. adj. kunmingensis pertaining to Kunming, a city of Yunnan in south-west China).

Cells are Gram-positive, aerobic, acid-fast, non-spore-forming and non-motile. Forms filaments or shows elementary branching in the early growth phase and occurs mostly as cocci in stationary phase. Colonies are pink

Fig. 1. Neighbour-joining tree showing the phylogenetic relationships between strain YIM 45607T and related species of the genus \textit{Rhodococcus}, based on 16S rRNA gene sequences. Numbers on branch nodes are bootstrap values (percentages of 1000 replicates). Bar, 1 substitution per 100 nucleotide positions.

- \textit{R. opacus} DSM 43205T (46.5 ± 4\%), \textit{R. wratislaviensis} DSM 44107T (40.3 ± 7\%), \textit{R. triatoma} DSM 44892T (34.4 ± 5\%) and \textit{R. equi} DSM 20307T (35.4 ± 10\%) (means ± SD). These results were consistent with the conclusion drawn by Yassin (2005) that representatives of \textit{Rhodococcus} species with 16S rRNA gene sequence similarities greater than 98\% may share whole genomic DNA relatedness values well below the 70\% cut-off point recommended for delineation of bacterial genomic species (Wayne \textit{et al.}, 1987).

The genotypic and phenotypic data (Table 1) described above suggest that strain YIM 45607T could be distinguished from its closest phylogenetic neighbours. Therefore, strain YIM 45607T represents a novel species of the genus \textit{Rhodococcus}, for which the name \textit{Rhodococcus kunmingensis} sp. nov. is proposed.
pigmented (approx. 0.35–1.2 mm in diameter after 7 days of incubation at 28 °C), circular and convex with a smooth surface on ISP 2 and light-pink pigmented (approx. 0.23–1.35 mm in diameter after 7 days of incubation at 28 °C) on TSA. Growth occurs at 10–37 °C and pH 7.0–7.5; no growth below 10 °C or above 37 °C. Growth occurs in the presence of 7% NaCl, but not above 7% NaCl. Catalase-positive, oxidase-negative. H₂S is not produced and nitrate is reduced. Decomposes adenine, ascinulin, L-arginine, L-asparagine, gelatin, L-histidine, L-proline, L-tyrosine and urea, but not casein, elastin, hypoxanthine or starch. Utilizes amygdalin, L-arabinose, butanediol, fructose, D-glucose, lactose, mannose, melibiose, sodium benzoate, sodium malate, sodium succinate, sucrose, tartrate, xylitol and L-xyllose as sole carbon sources and utilizes raffinose and trehalose weakly, but does not utilize chitin, maltose, oxalate or propionate. Contains meso-diaminopimelic acid, and arabinose and galactose are present in cell-wall hydrolysates. MK-8(H₂) is the predominant menaquinone.

The phospholipid pattern consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannose. Mycolic acids are present. The fatty acid profile (>1%) is as follows: C₁₆:0 (44.0%), C₁₈:1ω₉c (25.9%), C₁₆:1ω₇c (10.2%), C₁₄:0 (6.9%), 10-methyl C₁₈:0 (tuberculostearic acid) (4.8%), C₁₈:0 (2.3%), C₁₇:ω8c (1.5%) and C₁₇:0 (1.4%). The G+C content of genomic DNA of the type strain is 64.9 mol%.

The type strain, YIM 45607T (=KCTC 19149T =DSM 45001T), was isolated from a rhizosphere soil sample collected in Kunming, south-west China.

Acknowledgements

This research was supported by the National Basic Research Program of China (no. 2004CB719601), the National Natural Science Foundation of China (nos 30560001 and 30600001), the Key Project of the Chinese Ministry of Education (no. 206139), the Yunnan Provincial International Cooperative Program (no. 2005GH21) and the Ministry of Science and Technology, PR China (2006DFA33550). W.-J.L. was also supported by the Program for New Century Excellent Talent in University (NCET).

References

