Chromobacterium haemolyticum sp. nov., a strongly haemolytic species

Xiang Y. Han, Faye S. Han and Jonathan Segal

Section of Clinical Microbiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA

A Gram-negative bacterium, strain MDA0585T, isolated from a sputum culture, was characterized by a polyphasic approach. The 16S RNA gene and a conserved portion of the DNA gyrase A gene were sequenced and analysed phylogenetically. Strain MDA0585T showed the closest relationships with Chromobacterium violaceum ATCC 12472T and Chromobacterium subtsugae PRAA4-1T (96.1% and 96.3% 16S rRNA gene sequence similarity, respectively). The cellular fatty acids of strain MDA0585T consisted mainly of C16:0, C16:1ω7c and C16:1ω6c (summed feature 3) and C18:1ω7c and C18:1ω6c (summed feature 8), a profile that was similar to, but distinguishable from, those of C. violaceum ATCC 12472T and C. subtsugae PRAA4-1T. In culture, strain MDA0585T differed from C. violaceum and C. subtsugae in several ways: lack of violet pigmentation, the ability to haemolysed sheep blood, differences in several biochemical reactions and higher resistance to antibiotics. The culture supernatant of strain MDA0585T also caused remarkable haemolysis of human erythrocytes. These results suggest that strain MDA0585T represents a novel species within the genus Chromobacterium, for which the name Chromobacterium haemolyticum sp. nov. is proposed. The type strain is MDA0585T (＝CCUG 53230T＝JCM 14163T＝DSM 19808T).

Chromobacterium violaceum (Wooley, 1905) is a Gram-negative bacterium and is the type species of the genus Chromobacterium, which at the time of writing, comprises only three recognized species. One species, Chromobacterium fluviale has been transferred to the genus Iodobacter as Iodobacter fluvialis (Logan, 1989). The other member of the genus is Chromobacterium subtsugae, which was described recently by Martin et al. (2007). An organism with the non-validly published name of ‘Chromobacterium viscosum’, known for its production of a lipase, is probably more likely to be a strain of Burkholderia glumae, when the identical amino acid sequences of the lipases are considered (Taipa et al., 1995; Traub et al., 2001). C. violaceum is an environmental organism with worldwide distribution, but is particularly abundant in the Brazilian Amazon basin [Brazilian National Genome Project Consortium (BNGPC), 2003; Hungria et al., 2005]. C. violaceum is rarely pathogenic but may cause rapidly fatal sepsis (Teoh et al., 2006). The most prominent feature of C. violaceum is the appearance of violet colonies due to the production of violacein, but non-pigmented organisms have also been documented. The genome of C. violaceum has been sequenced and many unique features have been revealed, including remarkable extracellular secretion pathways for various bacterial products, such as violacein (BNGPC, 2003).

There are considerable phylogenetic diversifications among strains of C. violaceum (Hungria et al., 2005; Scholz et al., 2005), suggesting the possibility of additional species, as exemplified by the species C. subtsugae that also produces violet pigment (Martin et al., 2007). In this study, we report the characterization of a non-pigmented species of the genus Chromobacterium by the use of a polyphasic taxonomic approach. Strain MDA0585T was isolated in June 2001 from a sputum culture (with doubtful clinical significance) in Texas, USA. The almost full length 16S rRNA gene of MDA0585T was amplified by PCR and sequenced according to previously published procedures (Han et al., 2001, 2002). A conserved head portion of the DNA gyrase A gene (gyrA) was amplified and sequenced using primers 5'-TACCGGATGAGCGTGATCGTC and 5'-GGTGTGCGGGGATGTTGAT. The fragment contained 489 base pairs that encoded 162 amino acids. Sequence analysis was performed through a query to the GenBank basic local
The haemolysis assay was performed with modifications from a published procedure (Rowe & Welch, 1994). Human red blood cells (RBC) treated with anticoagulant were washed three times in phosphate buffered saline (PBS), pH 7.4, by centrifugation (1300 g × 5 min). Liquid bacterial cultures of strain MDA0585T, *C. violaceum* ATCC 12472T, *Pseudomonas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC 25923 and *Escherichia coli* ATCC 25922 were grown in trypticase soy broth (BBL) at 37 °C with 2% (v/v) seeding organisms and moderate aeration for varying or indicated incubation hours. Growth density was measured at OD\textsubscript{580}. Culture supernatant was obtained by removing the cell pellet by centrifugation (15 800 g × 10 min). The reaction mix was incubated for 1 hour at 37 °C, after which it was centrifuged (1300 g × 5 min) to remove cellular debris; the released deoxyhaemoglobin was measured at 558 nm (Voet & Voet, 1995). The assay included water and culture medium as positive and negative controls, respectively. The degree of haemolysis caused by a culture supernatant was measured as a percentage of the positive control.

Cellular fatty acids were analysed in a commercial laboratory using GLC, Sherlock Version 4.5 software and library RCLN505.00 (Microbial ID). The biochemical reactions were performed with several tube media (BBL), miniaturized API 20NE tests and a Vitek instrument (bioMérieux). The antibiotic susceptibility tests were performed using Etest (AB Biodisk) on Mueller–Hinton agar and the results were interpreted according to the breakpoints set by the Clinical and Laboratory Standards Institute (CLSI) for Gram-negative rods other than the family *Enterobacteriaceae* and *Pseudomonas aeruginosa* (CLSI, 2005).

A phylogenetic tree based on the 16S rRNA gene of strain MDA0585T, *C. violaceum* and two chromobacterial sequences formed a distinct branch with the closest relationships. On the basis of 16S rRNA gene sequences, strain MDA0585T shared 96.1–96.3% similarity with those of *C. violaceum* ATCC 12472T and *C. subtsgue* PRAA4-1T, suggesting species-level phylogenetic distance. Other closer organisms, matching at levels of 90–89%, without gaps, included *Ralstonia solanacearum* (GenBank accession no. AL646052, Salanoubat et al., 2002), *Neisseria meningitidis* (AE002098, Tettelin et al., 2000) and *Burkholderia glumae* BGR1 (AY224131, Jeong et al., 2003). A previous study has found that the genera *Chromobacterium* and *Neisseria* are within the same family, the family *Neisseriaceae* (Dewhirst et al., 1989).

The results of the *gyrA* gene sequence analysis were almost identical to the 16S rRNA gene sequence analysis: The *gyrA* gene sequence of the novel strain was closest, with 92% similarity, to that of *C. violaceum* at both the nucleotide and translated amino acid level. The similarities with, in descending order, *Burkholderia glumae* M3 (AB121697, Maeda et al., 2004), *Ralstonia solanacearum* (AL646052, Salanoubat et al., 2002) and *Neisseria meningitidis* (AE002098, Tettelin et al., 2000) were 85–76% similarity for nucleotides and 87–80% similarity for amino acids.

Fig. 1. A 16S rRNA gene-based phylogenetic tree showing strain MDA0585T and other organisms. The sequence of *C. violaceum* ATCC 12472T used was GenBank accession no. M22510 with 14 ambiguous nucleotides resolved. The genome sequences of *C. violaceum* (AE016825), *N. meningitidis* (AE002098) and *R. solanacearum* (AL646052) were not used for tree construction due to their large size.

http://ijs.sgmjournals.org 1399
The 16S rRNA gene of strain MDA0585T also matched those of several unnamed but probable chromobacteria, i.e. 99.5% (1447/1454) with GenBank accession no. AY345393 (S. P. Donachie and others, unpublished), 98.9% (1444/1460) with AB017489 (T. Hamada, unpublished) and 97.5% (1421/1457) with AY117562 (Hungria et al., 2005).

The most striking feature of strain MD0585T was its strong haemolytic activity on sheep blood agar culture (Fig. 2a). The haemolysis began after several hours incubation in the heavily streaked area and reached 5 mm in diameter surrounding individual colonies at 24 h. To our knowledge, this degree of haemolysis is the fastest and strongest thus far seen in a clinical microbiology laboratory. There was no violet pigmentation, contrasting with the deep purple colour of non-haemolytic colonies of *C. violaceum* (Fig. 2b). Upon extended incubation (4 days), *C. violaceum* caused slight haemolysis. In a similar manner to *C. violaceum*, the newly described species *C. subtsugae* also exhibits non-haemolytic and deep purple colonies (Martin et al., 2007).

Using human RBC, the haemolytic activity of culture supernatants from 14 h incubation was tested. Assayed with or without CaCl2, strain MDA0585T produced the strongest haemolysis, 45.5–70.1% (mean 56.5% in three culture experiments) (with CaCl2) and 36.8–70.9% (mean 51.2%) (without CaCl2), as compared with *C. violaceum*, which showed means of 18.6% (15.8–20.5% in three culture experiments) and 4.0% (2.0–7.3%) with or without CaCl2. *Pseudomonas aeruginosa*, *E. coli* and *S. aureus* caused 0–9.5% haemolysis in the presence or absence of CaCl2. The culture densities for these organisms were similar (OD580 of 1.8–2.4). In a time-course study, strain MDA0585T and *C. violaceum* grew in a similar manner, but caused varying degrees of haemolysis (see Supplementary Fig. S1 in IJSEM Online). Strain MDA0585 caused little haemolysis in 2 to 4 h cultures but remarkable haemolysis was seen in 7, 10 and 14 h cultures. The peak was at 7 h, corresponding to the mid- to late-exponential growth phase, and it reached 86.4% in the presence of calcium. After the peak, haemolytic activities dropped steadily to 45.5% (with CaCl2) at 14 h. Overall, the presence of calcium slightly increased haemolytic activities.

For *C. violaceum*, the cultures showed a much lower rate of haemolytic activity, which essentially plateaued after 7 h, with a small peak of 20.5% (with CaCl2) at 14 h. The presence of calcium substantially increased the rate of haemolytic activity of *C. violaceum*. As measured by the peak rates of haemolysis, strain MDA0585T caused 4.2 times (86.4% versus 20.5%) more haemolysis than *C. violaceum*.

The cellular fatty acids of strain MDA0585T contained mainly C16:0, C16:1ω7c and C16:1ω6c (summed feature 3) and C18:1ω7c and C18:1ω6c (summed feature 8), with a low similarity (index of <0.441 on a scale of 1) to *C. violaceum* (see Supplementary Table S1, in IJSEM Online). However, the highest similarity indices indicated moderate similarity to *Photobacterium angustum* ATCC 25915T (0.663), *Photobacterium damselae* ATCC 33539T (0.543) and *Photobacterium leiognathi* ATCC 25521T (0.512). The similarity index of strain MDA0585T with *C. subtsugae* could not be assessed, but the latter strain also contained 41.9% of C16:1ω7c (Martin et al., 2007), similar to strain MDA0585T.

The growth, biochemical reactions and results of antibiotic susceptibility tests are shown in Table 1. Both strain MDA0585T and *C. violaceum* ATCC 12472T grew readily on a few common agar plates, with some differences in colony morphology, pigmentation and haemolysis. Strain MDA0585T also grew well on trypticase soy agar but poorly on MacConkey agar and hardly at all on Hektoen enteric agar (after extended incubation), differing from the growth of *C. violaceum* ATCC 12472T on these plates. Both organisms were regular Gram-negative rods and some cells of strain MDA0585T showed intracellular vacuoles that intensified with the ageing of the culture. For biochemical tests, the Vitek GNI + card, which tested 30 biochemical reactions, yielded bionumbers 6022000060 for *C. violaceum* ATCC 12472T and 7022000060 for strain MDA0585T (both with 99% confidence for *C. violaceum*), with the sole difference being that strain MDA0585T gave a positive...

Fig. 2. Strain MDA0585T with marked haemolysis (a) and *C. violaceum* ATCC 12472T with deep violet pigmentation (b) on sheep blood agar after 24 h culture. The change of the red cell colour in (a) was due to transmission of the background fluorescent light through the haemolysed zone as compared with no light transmission in (b).
result for DP3 (inhibition of glucose fermentation by hydroxydiphenylether) whereas C. violaceum ATCC 12472T gave a negative result. The API 20NE test, which examined 21 reactions, yielded a bionumber of 7152550 for C. violaceum ATCC 12472T (99.9\% confidence) at both 24 and 48 h of incubation. The bionumbers for strain MDA0585T were 1154555 at 24 h (98\% confidence for Pseudomonas aeruginosa) and 5154555 at 48 h when glucose fermentation became positive (99.6\% confidence for C. violaceum). Therefore, strain MDA0585T would be identified as C. violaceum by these tests; however, different API 20NE codes can be used to separate them. In addition, the oxidase test was positive for strain MDA0585T but negative for C. violaceum. The catalase test was weakly positive for strain MDA0585T but positive for C. violaceum ATCC 12472T. The results of antimicrobial susceptibility tests also differed. Strain MDA0585T was more resistant overall, with higher minimum inhibitory concentrations for most drugs. Specifically, strain MDA0585T was resistant to cefepime, piperacillin/tazobactam and ticarcillin/clavulanate, whereas C. violaceum ATCC 12472T was susceptible or intermediate to these antibiotics. Both organisms were resistant to penicillin and ceftriaxone, but susceptible to ciprofloxacin, imipenem, amikacin and trimethoprim/sulfamethoxazole. The resistance profile prompted a review of the history of the patient from whom strain MDA0585T was isolated. The patient suffered from oesophageal cancer and had not received prior antibiotics. Thus, there was no antibiotic selection effect.

Direct biochemical comparisons between strain MDA0585T and the type strain of C. subsugae were not made, owing to the recent description of C. subsugae. However, by analysis of the reported data for the type strain of C. subsugae (Martin et al., 2007), these strains differed in the utilization of citrate and mannose. C. subsugae also grows well on MacConkey agar, which is similar to C. violaceum ATCC 12472T but different from strain MDA0585T (Table 1). Antimicrobial susceptibility data for C. subsugae are not available for comparison.

Taken together, the genotypic and phenotypic features of strain MDA0585T suggest that the new strain represents a new species of the genus Chromobacterium.

Table 1. Growth, biochemical reactions and results of antibiotic susceptibility tests for strain MDA0585T and C. violaceum ATCC 12472T

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MDA0585T</th>
<th>C. violaceum ATCC 12472T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth on agar (37\°C, 5% CO\textsubscript{2}, 24 h):</td>
<td>All non-pigmented</td>
<td>All purple</td>
</tr>
<tr>
<td>Sheep blood</td>
<td>2 mm, β-haemolysis</td>
<td>2 mm, no haemolysis</td>
</tr>
<tr>
<td>Chocolate</td>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Buffered charcoal yeast extract</td>
<td>2 mm, flat, dull</td>
<td>2 mm, raised, shiny</td>
</tr>
<tr>
<td>Trypticase soy</td>
<td>1.8 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>MacConkey</td>
<td>0.2 mm, pinpoint</td>
<td>1 mm</td>
</tr>
<tr>
<td>Hektoen enteric</td>
<td>No growth</td>
<td>0.2 mm, pinpoint</td>
</tr>
<tr>
<td>Indole production (tryptophanase)</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Glucose fermentation</td>
<td>+ (weak)</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannose</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Citrate</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Catalase</td>
<td>+ (weak)</td>
<td>+</td>
</tr>
<tr>
<td>Antimicrobial susceptibility (MIC, \mu g ml–1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>16, S</td>
<td>3, S</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>32, R</td>
<td>2, S</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>>32, R</td>
<td>>32, R</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.003, S</td>
<td>0.006, S</td>
</tr>
<tr>
<td>Imipenem</td>
<td>6.0, S</td>
<td>1.0, S</td>
</tr>
<tr>
<td>Penicillin</td>
<td>>32, R</td>
<td>>32, R</td>
</tr>
<tr>
<td>Piperacillin/tazobactam</td>
<td>>256, R</td>
<td>3, S</td>
</tr>
<tr>
<td>Ticarcillin/clavulanate</td>
<td>>256, R</td>
<td>32, I</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>0.094, S</td>
<td>0.094, S</td>
</tr>
</tbody>
</table>

+ Positive; –, Negative; MIC, minimum inhibitory concentration; s, susceptible; i, intermediate; r, resistant.

Both strains showed positive results in the following biochemical tests: nitrate reduction to nitrite, arginine dihydrolase, gelatin hydrolysis and utilization of glucose, gluconate, caprate, malate and N-acetylglucosamine. Both strains gave negative results for urea hydrolysis, aesculin hydrolysis, phenyl-galactopyranosidase, H\textsubscript{2}S production (by lead acetate strip and triple-sugar iron agar) and utilization of adipate, arabinose, maltose and phenylacetate. Both strains give an alkaline/acid reaction in triple-sugar iron slants/butts.
novel species of the genus *Chromobacterium*, that can be
distinguished from both the well characterized species *C.
violeceum* as well as the recently reported species, *C.
subtsugae*. The name *Chromobacterium haemolyticum* sp.
 nov. is proposed for the novel strain.

Before the recognition of *C. haemolyticum* sp. nov., many
cases of *C. violaceum* infections had been reported. For
instance, Lee et al. (1999) and Kim et al. (2005) reported
infections caused by three non-pigmented but β-hae-
molitic strains of *C. violaceum*. In retrospect, these
features, along with their nearly identical API 20NE codes,
make these strains more likely to be *C. haemolyticum* sp.
 nov. instead of *C. violaceum*. The clinical significance of *C.
subtsugae* is unknown, but this recently described species is
barely distinguishable from *C. violaceum* based on
morphology and commercial identification kits (such as the
Biolog assay).

Description of Chromobacterium haemolyticum
sp. nov.

Chromobacterium haemolyticum (hae.mo.ly’ti.cum. Gr. n.
haima haimatos blood; Gr. adj. lutikos loosening, dissol-
ving; N.L. adj. lyticus -a -um dissolving; N.L. neut. adj.
haemolyticum dissolving blood).

Gram-negative bacillus that grows readily on several types
of agar plates (sheep blood, chocolate, trypticase soy and
buffered charcoal yeast extract). The colonies are grey,
round and elevated and may reach 2 mm after 24 h
incubation. On sheep blood agar, colonies are surrounded
by a clear haemolytic zone (5 mm); a remarkable feature.
The colonies are non-pigmented, contrasting with the
violet colonies of other known chromobacteria. Poor
growth on MacConkey agar and no growth on Hektoen
enteric agar. In liquid culture, a potent haemolysin is
secreted into the culture medium in the mid- to late-
exponential growth phase, causing the haemolysis of
human erythrocytes. In biochemical tests, reduces nitrate,
assimilates glucose, hydrolyses arginine and gelatin and
utilizes several sugars aerobically, such as glucose, mannito,
N-acetylglucosamine, gluconate, caprate, malate and
citrate. It is also positive for oxidase activity and weakly
positive for catalase activity. Does not produce indole.
Generally more resistant to antibiotics than
Chromobacterium violaceum.
The type strain, MDA0585 T (=CCUG 53230 T =JCM
14163 T =DSM 19808 T), was isolated in June 2001 from a
sputum culture from a patient.

Acknowledgements

The authors thank the staff at the University of Texas M. D.
Anderson Cancer Center sequencing Core Facility for DNA sequencing and
Hans G. Truper PhD for assistance with the Latin language. This work
was supported in part by the National Institutes of Health grant
CA16672 for our Sequencing Core Facility.

References

Altschul, S. F., Thomas, L. M., Alejandro, A. S., Zhang, J., Zhang, Z., Webb,

Brazilian National Genome Project Consortium (2003). The
complete genome sequence of *Chromobacterium violaceum* reveals
remarkable and exploitable bacterial adaptability. *Proc Natl Acad Sci
USA* 100, 11660–11665.

Standards for Antimicrobial Susceptibility Testing; Fifteenth
Informational Supplement, vol. 25, M100–S15. Wayne, PA: Clinical
and Laboratory Standards Institute (formerly NCCLS).

Dewhirst, F. E., Paster, B. J. & Bright, P. L. (1989). *Chromobacterium*,
Eikenella, *Kingella*, *Neisseria*, *Simonsiella*, and *Vitreoscilla* species
comprise a major branch of the beta group *Proteobacteria* by 16S
ribosomal ribonucleic acid sequence comparison: transfer of *Eikenella*
and *Simonsiella* to the family *Neisseriaceae* (emend). *Int J Syst
Bacteriol* 39, 258–266.

3.5c. Distributed by the author. Department of Genetics, University of
Washington, Seattle.

Han, X. Y. & Andrade, R. A. (2005). *Brevundimonas diminuta*
infections and its resistance to fluoroquinolones. *J Antimicrob

Han, X. Y., Pham, A. S., Nguyen, K. U., Smythe, W. R., Ordonez, N. G.,

Rapid and accurate identification of mycobacteria by sequencing
hypervariable regions of the 16S ribosomal RNA gene. *Am J Clin
Pathol* 118, 796–801.

Hungria, M., Astolfi-Filho, S., Chueire, L. M., Nicolas, M. F., Santos,
E. B., Bulbol, M. R., Souza-Filho, A., Nogueira Assuncao, E.,
tion of *Chromobacterium* isolates from black water environments

Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. & Hwang, I.
(2003). Toxoflavin produced by *Burkholderia glumae* causing rice
gain rot is responsible for inducing bacterial wilt in many field crops.
Plant Dis 87, 890–895.

case of *Chromobacterium* infection after car accident in Korea. *Yonsei

Lee, J., Kim, J. S., Naahm, C. H., Choi, J. W., Kim, J., Pai, S. H., Moon,
violaceum* infection after injury in a subtropical region. *J Clin
Microbiol* 37, 2068–2070.

Gram-negative bacteria and description of *Iodobacter fluvitile* gen.

amino acid substitutions in GyrA at position 83 in terms of oxolinic
acid resistance in field isolates of *Burkholderia glumae*, a causal agent
of bacterial seedling rot and grain rot of rice. *Appl Environ Microbiol*
70, 5613–5620.

Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic
to...

