Lactobacillus sobrius Konstantinov et al. 2006 is a later synonym of Lactobacillus amylovorus Nakamura 1981

Miia Jakava-Viljanen,1,2 Anna Murros,3 Airi Palva2 and Katri Johanna Björkroth3

1Finnish Food Safety Authority (Evira), Virology, Mustialankatu 3, FIN-00790 Helsinki, Finland
2Department of Basic Veterinary Sciences, Microbiology and Epidemiology, PO Box 66, Agnes Sjöbergin katu 2, FIN-00014 University of Helsinki, Finland
3Department of Food and Environmental Hygiene, PO Box 66, Agnes Sjöbergin katu 2, FIN-00014 University of Helsinki, Finland

While studying the taxonomy of six lactic acid bacterium isolates from Finnish porcine intestine and faeces, the taxonomic positions of Lactobacillus sobrius type strain DSM 16698T and strain AD5 based on comparative 16S rRNA sequence analysis were found to be controversial, as they showed high similarity to Lactobacillus amylovorus strains. Therefore, the taxonomy of these species was addressed in a polyphasic taxonomy study that included, in addition to re-evaluating the 16S rRNA gene sequence and DNA–DNA reassociation results, multilocus sequence analysis (MLSA) of the housekeeping genes encoding the phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA) as well as numerical analysis of HindIII and EcoRI ribotypes. 16S rRNA gene sequence analysis demonstrated a very high similarity between the L. sobrius and L. amylovorus type and reference strains and representative Finnish porcine isolates (99.6–99.9 %). The MLSA data showed the close phylogenetic relationship of these strains; pheS and rpoA gene sequence similarities were 98.5–100 % and 99.6–99.8 %, respectively. Numerical analyses of HindIII/EcoRI ribotypes placed these strains in a single cluster by both enzymes. Finally, the DNA–DNA reassociation experiments revealed high reassociation levels (higher than 79 %) between the strains. These results indicate that DSM 16698T, AD5 and the related porcine lactobacilli strains from Finland constitute a single species, Lactobacillus amylovorus, and that the name Lactobacillus sobrius should be considered as a later synonym of Lactobacillus amylovorus.

DNA–DNA hybridization studies, the large Lactobacillus acidophilus group is divided into six groups, A1–A4 and B1–B2, that correspond to the previously assigned species L. acidophilus (A1), Lactobacillus crispatus (A2), L. amylovorus (A3), Lactobacillus gallinarum (A4), Lactobacillus gasseri (B1) and Lactobacillus johnsonii (B2) (Johnson et al., 1980; Lauer et al., 1980; Fujisawa et al., 1992). Although these genome clusters have been designated separate species, they are difficult to distinguish solely on the basis of phenotypic characteristics. Recent EcoRI ribotyping data further suggest that the group should be divided into 14 genotypes, A1–A11 and B1–B3, and gives evidence that some of the Lactobacillus strains identified previously would require reclassification in different species (Ryu et al., 2001). In 2006, Lactobacillus sobrius was described by Konstantinov et al. (2006) in a study dealing with six strains isolated from piglet intestine and faeces. While studying the taxonomy of six lactic acid bacterium isolates from Finnish porcine intestine and faeces, the taxonomic positions of Lactobacillus sobrius type strain DSM 16698T and strain AD5 based on comparative 16S rRNA sequence analysis were found to be controversial, as they showed high similarity to Lactobacillus amylovorus strains. Therefore, the taxonomy of these species was addressed in a polyphasic taxonomy study that included, in addition to re-evaluating the 16S rRNA gene sequence and DNA–DNA reassociation results, multilocus sequence analysis (MLSA) of the housekeeping genes encoding the phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA) as well as numerical analysis of HindIII and EcoRI ribotypes. 16S rRNA gene sequence analysis demonstrated a very high similarity between the L. sobrius and L. amylovorus type and reference strains and representative Finnish porcine isolates (99.6–99.9 %). The MLSA data showed the close phylogenetic relationship of these strains; pheS and rpoA gene sequence similarities were 98.5–100 % and 99.6–99.8 %, respectively. Numerical analyses of HindIII/EcoRI ribotypes placed these strains in a single cluster by both enzymes. Finally, the DNA–DNA reassociation experiments revealed high reassociation levels (higher than 79 %) between the strains. These results indicate that DSM 16698T, AD5 and the related porcine lactobacilli strains from Finland constitute a single species, Lactobacillus amylovorus, and that the name Lactobacillus sobrius should be considered as a later synonym of Lactobacillus amylovorus.

Twelve starch-hydrolysing strains isolated from cattle waste-corn fermentations in the USA were included in a study by Nakamura (1981), resulting in the description of Lactobacillus amylovorus. These strains were Gram-positive, non-spore-forming, facultatively anaerobic, catalase-negative and produced D- and L-lactic acid homofermentatively. There was no growth at 15 °C, but the bacterium grew at 45 °C. The DNA G+C content was reported as 40.4 mol% in the original description (Nakamura, 1981). Based on

Abbreviations: FOS, fructo-oligosaccharides; MLSA, multilocus sequence analysis.

The GenBank/EMBL/DDBJ accession numbers for the pheS and rpoA

DNA–DNA hybridization studies, the large Lactobacillus acidophilus group is divided into six groups, A1–A4 and B1–B2, that correspond to the previously assigned species L. acidophilus (A1), Lactobacillus crispatus (A2), L. amylovorus (A3), Lactobacillus gallinarum (A4), Lactobacillus gasseri (B1) and Lactobacillus johnsonii (B2) (Johnson et al., 1980; Lauer et al., 1980; Fujisawa et al., 1992). Although these genome clusters have been designated separate species, they are difficult to distinguish solely on the basis of phenotypic characteristics. Recent EcoRI ribotyping data further suggest that the group should be divided into 14 genotypes, A1–A11 and B1–B3, and gives evidence that some of the Lactobacillus strains identified previously would require reclassification in different species (Ryu et al., 2001). In 2006, Lactobacillus sobrius was described by Konstantinov et al. (2006) in a study dealing with six strains isolated from piglet intestine and faeces.

While studying the taxonomy of six lactic acid bacterium isolates from Finnish porcine intestine and faeces, the taxonomic positions of Lactobacillus sobrius type strain DSM 16698T and strain AD5 based on comparative 16S rRNA sequence analysis were found to be controversial, as they showed high similarity to Lactobacillus amylovorus strains. Therefore, the taxonomy of these species was addressed in a polyphasic taxonomy study that included, in addition to re-evaluating the 16S rRNA gene sequence and DNA–DNA reassociation results, multilocus sequence analysis (MLSA) of the housekeeping genes encoding the phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA) as well as numerical analysis of HindIII and EcoRI ribotypes. 16S rRNA gene sequence analysis demonstrated a very high similarity between the L. sobrius and L. amylovorus type and reference strains and representative Finnish porcine isolates (99.6–99.9 %). The MLSA data showed the close phylogenetic relationship of these strains; pheS and rpoA gene sequence similarities were 98.5–100 % and 99.6–99.8 %, respectively. Numerical analyses of HindIII/EcoRI ribotypes placed these strains in a single cluster by both enzymes. Finally, the DNA–DNA reassociation experiments revealed high reassociation levels (higher than 79 %) between the strains. These results indicate that DSM 16698T, AD5 and the related porcine lactobacilli strains from Finland constitute a single species, Lactobacillus amylovorus, and that the name Lactobacillus sobrius should be considered as a later synonym of Lactobacillus amylovorus.

Twelve starch-hydrolysing strains isolated from cattle waste-corn fermentations in the USA were included in a study by Nakamura (1981), resulting in the description of Lactobacillus amylovorus. These strains were Gram-positive, non-spore-forming, facultatively anaerobic, catalase-negative and produced D- and L-lactic acid homofermentatively. There was no growth at 15 °C, but the bacterium grew at 45 °C. The DNA G+C content was reported as 40.4 mol% in the original description (Nakamura, 1981). Based on

Abbreviations: FOS, fructo-oligosaccharides; MLSA, multilocus sequence analysis.

The GenBank/EMBL/DDBJ accession numbers for the pheS and rpoA
gene sequences of strains DSM 20531T, DSM 20532, DSM 16698T, AD5, LAB7, LAB8, LAB13 and LAB52 are EU000474–EU000489, respectively.

Supplementary phylogenetic trees and a table showing DNA–DNA relatedness among Lactobacillus strains are available with the online version of this paper.
hybridization values, the ability to ferment raffinose and
fructo-oligosaccharides (FOS) and the ability to grow at
45°C. Cell morphology, growth temperature and fer-
mentation abilities seem to be very similar to those of
the species L. amylovorus. Based on 16S rRNA gene sequence
similarity, Lactobacillus kitasatonis (99 %), L. crispatus
(98 %) and L. amylovorus (97 %) were the nearest relatives
of the novel species, but their DNA–DNA relatedness was
found to be lower than 49 %. However, the 16S rRNA gene
sequence published in the study distinguishing the two
species L. sobrius and L. amylovorus was later revised. On 25
September 2006, the 16S RNA sequence of L. sobrius
was updated by the submitter. This revised sequence possesses
much higher similarity (99.9 %) to the corresponding
sequence of the L. amylovorus type strain.

The high degree of similarity based on our preliminary
results between L. sobrius, L. amylovorus and L. sobrius/
amylovorus-like strains (Jakava-Viljanen & Palva, 2007)
prompted the present study. Our work was designed to
resolve the controversy associated with L. sobrius by means
of a polyphasic approach including phylogenetic analyses
of 16S rRNA and two other housekeeping genes (pheS and
rpoA), numerical analysis of ribotypes and DNA–DNA
reassociation experiments.

Three strains of L. amylovorus, DSM 20531T, DSM 20532
and DSM 20552, two strains of L. sobrius, DSM 16698T
and AD5 (supplied by S. Konstantinov, Wageningen
University, The Netherlands), and six L. amylovorus/
sobrius-like strains, LAB2, LAB7, LAB8, LAB13, LAB16
and LAB52 (Jakava-Viljanen & Palva, 2007), were selected
for the present study. All strains were cultivated and
maintained on MRS medium (Oxoid) and incubated
for the present study. All strains were cultivated and
maintained on MRS medium (Oxoid) and incubated
anaerobically at 37°C. Furthermore, they shared identical ribotypes. The similarity between all pairs was expressed by Dice
coefficient correlation, and the unweighted pair-group
method with arithmetic averages (UPGMA) was used for
the construction of the dendrogram. Based on internal
controls, 1.6 % position tolerance and 0.6 % optimization
were allowed for the bands/patterns. The ribopatterns were
compared with the corresponding patterns in the LAB
database and identification of the isolates was made on the
basis of the locations of the type strains in the clusters,
taking into account pattern similarity levels detected in the
previous studies utilizing this database. The L. sobrius type
strain DSM 16698T and strain AD5 and L. sobrius/
amylovorus-like strains clustered clearly together with the
L. amylovorus type and reference strains (Supplementary
Fig. S5). Moreover, they shared identical ribotypes. The similarity levels between L. sobrius DSM 16698T, L. amylovorus
DSM 20531T and other strains varied from
60.0 to 100.0% and 68.7% to 100% in
EcoRI and HindIII ribopattern analyses, respectively.

DNA–DNA reassociation was determined for LAB2, LAB7, LAB8, LAB13,
LAB16, LAB52, DSM 20531T, DSM 20552, DSM 16698T
and AD5. HindIII and EcoRI ribotyping procedures were
performed as described previously (Björkroth & Korkeala,
1996). Numerical analysis of the scanned (Hewlett Packard
ScanJet 4c/T) ribopatterns was performed using the BioNumerics 4.6 software package (Applied Maths). The similarity
between all pairs was expressed by Dice coefficient correlation, and the unweighted pair-group
method with arithmetic averages (UPGMA) was used for
the construction of the dendrogram. Based on internal
controls, 1.6 % position tolerance and 0.6 % optimization
were allowed for the bands/patterns. The ribopatterns were
compared with the corresponding patterns in the LAB
database and identification of the isolates was made on the
basis of the locations of the type strains in the clusters,
taking into account pattern similarity levels detected in the
previous studies utilizing this database. The L. sobrius type
strain DSM 16698T and strain AD5 and L. sobrius/
amylovorus-like strains clustered clearly together with the
L. amylovorus type and reference strains (Supplementary
Fig. S5). Moreover, they shared identical ribotypes. The similarity levels between L. sobrius DSM 16698T, L. amylovorus
DSM 20531T and other strains varied from
60.0 to 100.0% and 68.7% to 100% in
EcoRI and HindIII ribopattern analyses, respectively.

Ribotyping was determined for LAB2, LAB7, LAB8, LAB13,
LAB16, LAB52, DSM 20531T, DSM 20552, DSM 16698T
and AD5. HindIII and EcoRI ribotyping procedures were
performed as described previously (Björkroth & Korkeala,
1996). Numerical analysis of the scanned (Hewlett Packard
ScanJet 4c/T) ribopatterns was performed using the BioNumerics 4.6 software package (Applied Maths). The similarity
between all pairs was expressed by Dice coefficient correlation, and the unweighted pair-group
method with arithmetic averages (UPGMA) was used for
the construction of the dendrogram. Based on internal
controls, 1.6 % position tolerance and 0.6 % optimization
were allowed for the bands/patterns. The ribopatterns were
compared with the corresponding patterns in the LAB
database and identification of the isolates was made on the
basis of the locations of the type strains in the clusters,
taking into account pattern similarity levels detected in the
previous studies utilizing this database. The L. sobrius type
strain DSM 16698T and strain AD5 and L. sobrius/
amylovorus-like strains clustered clearly together with the
L. amylovorus type and reference strains (Supplementary
Fig. S5). Moreover, they shared identical ribotypes. The similarity levels between L. sobrius DSM 16698T, L. amylovorus
DSM 20531T and other strains varied from
60.0 to 100.0% and 68.7% to 100% in
EcoRI and HindIII ribopattern analyses, respectively.

DNA–DNA reassociation was determined for LAB2, LAB7, LAB8, LAB13,
LAB16, DSM 20531T, DSM 20552, DSM 16698T
and AD5. HindIII and EcoRI ribotyping procedures were
performed as described previously (Björkroth & Korkeala,
1996). Numerical analysis of the scanned (Hewlett Packard
ScanJet 4c/T) ribopatterns was performed using the BioNumerics 4.6 software package (Applied Maths). The similarity
between all pairs was expressed by Dice coefficient correlation, and the unweighted pair-group
method with arithmetic averages (UPGMA) was used for
the construction of the dendrogram. Based on internal
controls, 1.6 % position tolerance and 0.6 % optimization
were allowed for the bands/patterns. The ribopatterns were
compared with the corresponding patterns in the LAB
database and identification of the isolates was made on the
basis of the locations of the type strains in the clusters,
taking into account pattern similarity levels detected in the
previous studies utilizing this database. The L. sobrius type
strain DSM 16698T and strain AD5 and L. sobrius/
amylovorus-like strains clustered clearly together with the
L. amylovorus type and reference strains (Supplementary
Fig. S5). Moreover, they shared identical ribotypes. The similarity levels between L. sobrius DSM 16698T, L. amylovorus
DSM 20531T and other strains varied from
60.0 to 100.0% and 68.7% to 100% in
EcoRI and HindIII ribopattern analyses, respectively.

DNA–DNA reassociation was determined for LAB2, LAB7, LAB8, LAB13,
LAB16, DSM 20531T, DSM 20552, DSM 16698T
and AD5. HindIII and EcoRI ribotyping procedures were
performed as described previously (Björkroth & Korkeala,
1996). Numerical analysis of the scanned (Hewlett Packard
ScanJet 4c/T) ribopatterns was performed using the BioNumerics 4.6 software package (Applied Maths). The similarity
between all pairs was expressed by Dice coefficient correlation, and the unweighted pair-group
method with arithmetic averages (UPGMA) was used for
the construction of the dendrogram. Based on internal
controls, 1.6 % position tolerance and 0.6 % optimization
were allowed for the bands/patterns. The ribopatterns were
compared with the corresponding patterns in the LAB
database and identification of the isolates was made on the
basis of the locations of the type strains in the clusters,
taking into account pattern similarity levels detected in the
previous studies utilizing this database. The L. sobrius type
strain DSM 16698T and strain AD5 and L. sobrius/
amylovorus-like strains clustered clearly together with the
L. amylovorus type and reference strains (Supplementary
Fig. S5). Moreover, they shared identical ribotypes. The similarity levels between L. sobrius DSM 16698T, L. amylovorus
DSM 20531T and other strains varied from
60.0 to 100.0% and 68.7% to 100% in
EcoRI and HindIII ribopattern analyses, respectively.
Unicam) at 900 p.s.i. (approx. 6210 kPa) with a French pressure cell press (SLM-Aminco Spectronic). The fragmented DNA solution was dialysed again against 2× SSC. Each dialysis was done overnight at 5°C. The quantity and purity of DNA solutions were determined with an Eppendorf BioPhotometer spectrophotometer from absorbance at 230, 260 and 280 nm. Finally, reassociation measurements were done in 20 ml 2× SSC containing 30% formamide. The sample solutions contained DNA of strain A, the same amount of DNA of strain B or a mixture of equal amounts of DNA of A and B (A/2 + B/2). The concentration of DNA in the solutions was 60 ng ml⁻¹. A fluorescent dye, SYBR green I (Roche Diagnostics), was used to stain double-stranded DNA. A 10⁴ final dilution was used for the dye. Three replicates of each sample were made. Fluorescence levels were measured with the LightCycler instrument (Roche Diagnostics) and the LightCycler software was used to visualize the renaturation curves. In the LightCycler protocol, DNA was first denatured at 95°C for 10 min. The solution was then cooled to the renaturation temperature of 47°C in a few seconds. The fluorescence intensity was measured continuously over 30 min and the fluorescence data were plotted against time. The renaturation temperature was calculated using the following formulae by Gillis et al. (1970) and Hutton (1977). Formamide has been shown to decrease the melting temperature and thus the renaturation temperature by 0.60°C per % formamide (Hutton, 1977). To calculate the renaturation temperature the formula \(T = (0.51 \times GC\% + 47) - 0.60 \times %\text{formamide} \) was used. Renaturation rates were calculated from the renaturation curves as increase in fluorescence/time (\(\Delta F/\Delta t \)).

Reassociation values were calculated according to the formula of De Ley et al. (1970) as \(100 \times (4V_M - V_A - V_B)/ (2(\sqrt{V_A \times V_B})) \), where \(V_M \) is the renaturation rate of the DNA mixture of two strains and \(V_A \) and \(V_B \) the renaturation rates of DNA from individual strains. Hybriding were performed between \(L. \) sobrius, \(L. \) amylovorus and \(L. \) amylovorus/sobrius-like strains. All strains studied showed high DNA–DNA relatedness values, in the range of 79 to 121%, indicating clearly that the two taxa represent the same species. A DNA–DNA hybridization value of 85% was found between the type strains of the two species (Supplementary Table S1). Previous data by Konstantinov et al. (2006) reported a DNA–DNA relatedness value for \(L. \) sobrius DSM 16698\(^T\) and \(L. \) amylovorus DSM 20531\(^T\) of 49%, which is much lower than the value determined in our study. The DNA–DNA hybridization experiments confirmed the results of our other investigation methods (16S rRNA and housekeeping gene sequencing and ribotyping).

In the present report, DNA–DNA hybridization values indicate unambiguously that strain DSM 16698\(^T\) and related \(L. \) sobrius/amylovorus-like strains belong to \(L. \) amylovorus. This species-level conclusion was supported by numerical analysis of ribotypes, sequence comparison of two housekeeping genes (pheS and rpoA) and also by 16S rRNA gene sequence analysis. On the basis of these results, it is proposed that the two species, \(Lactobacillus \) sobrius and \(Lactobacillus \) amylovorus, be united under the same name; according to the rules of priority (Rules 38 and 42 of the Bacteriological Code; Lapage et al., 1992), the name \(Lactobacillus \) amylovorus should be retained, strains of

Fig. 1. Maximum-parsimony tree based on the rpoA gene sequences of strains of the \(Lactobacillus \) acidophilus group. Bootstrap percentages after 500 simulations are shown. \(Lactobacillus \) sakei subsp. carnosus DSM 17302\(^T\) was included as an outgroup.
Lactobacillus sobrius should be reclassified as such and the name *Lactobacillus sobrius* should be considered a later heterotypic synonym.

Acknowledgements

We would like to thank Ms H. Niinivirta for her excellent technical assistance. Financial support from the Academy of Finland (project decision no. 110310 and a grant Doctoral studies of employed persons for M. J.-V.) is gratefully acknowledged. Special thanks are also due to Sergey Konstantinov and Willem de Vos (Wageningen University, The Netherlands, and University of Helsinki, Finland) for supplying strain AD5.

References

