Brevibacterium album sp. nov., a novel actinobacterium isolated from a saline soil in China

Shu-Kun Tang,1† Yun Wang,2† Peter Schumann,3 Erko Stackebrandt,3 Kai Lou,2 Cheng-Lin Jiang,1 Li-Hua Xu1 and Wen-Jun Li1

1The Key Laboratory for Microbial Resources of the Ministry of Education, PR China, and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
2Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, PR China
3DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7b, D-38124 Braunschweig, Germany

A novel Gram-positive, rod-shaped actinobacterium, designated strain YIM 90718T, was isolated from a saline soil in Xinjiang province, north-west China, and subjected to polyphasic taxonomy. The peptidoglycan type was A1γ and the cell-wall sugars contained galactose. Phospholipids were phosphatidylglycerol and diphosphatidylglycerol. The predominant menaquinone was MK-8(H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. All of these chemotaxonomic data assigned the new isolate YIM 90718T consistently to the genus *Brevibacterium*. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM 90718T formed a distinct phyletic lineage in the genus *Brevibacterium*. Phylotype analysis based on 16S rRNA gene sequences showed the highest sequence similarity (96.2%) to *Brevibacterium samyangense* SST-8T and low similarity (<95.5%) to other species of the genus *Brevibacterium*. On the basis of the polyphasic evidence, a novel species, *Brevibacterium album* sp. nov., is proposed, with the type strain YIM 90718T (=DSM 18261T =KCTC 19173T =CCTCC AB 206112T).

The genus *Brevibacterium* was first proposed by Breed (1953) for some Gram-positive, non-spore-forming, non-branching rods formerly classified as the genus *Bacterium*. The description of the genus was later emended and restricted only to species that correspond to the type species *Brevibacterium linens* on the basis of morphological and chemotaxonomic characteristics (Collins *et al.*, 1980). The genus currently contains 16 species with validly published names isolated from clinical specimens, dairy products, poultry and terrestrial and marine environments. While this paper was in preparation, *Brevibacterium samyangense*, isolated from beach sediment, was reported (Lee, 2006). In this article, strain YIM 90718T, isolated from a saline soil, is described as a novel member of the genus *Brevibacterium* based on polyphasic taxonomy.

Strain YIM 90718T was isolated from a saline soil sample collected from Xinjiang, after 2 weeks incubation at 37°C on modified ISP medium 5. This medium contained (g l−1): L-asparagine, 1.0; glycerol, 10.0; yeast extract, 5.0; K2HPO4, 1.0; KNO3, 5.0; KCl, 150; and agar, 15.0. KCl was sterilized separately before being added to the medium. The pH of the medium was adjusted to pH 7.5. The strain was maintained on ISP 5 slants (Shirling & Gottlieb, 1966) containing 5% (w/v) NaCl at 4°C and as glycerol suspensions (20%, v/v) at −20°C. Biomass for chemical and molecular studies was obtained by cultivation in shaken flasks (about 150 r.p.m.) using ISP medium 5 [5% (w/v) NaCl, pH 7.5] at 37°C for 1 week.

Cell morphology was determined using cultures grown for 6, 12, 16, 24 and 72 h on modified ISP 5 agar medium supplemented with 5% (w/v) NaCl at 37°C. Gram staining was carried out by the standard Gram reaction and was confirmed by using the KOH lysis test method (Cerny, 1978). Cell motility was confirmed by the presence of turbidity throughout tubes of semisolid medium (Leifson, 1960). Morphological characteristics of the strain were observed by light microscopy (model BH 2; Olympus) and by transmission electron microscopy with a model H-800 transmission electron microscope (Hitachi). Growth was tested at 4, 10, 20, 28, 37, 45, 55 and 65°C on ISP medium 5 containing 5% (w/v) NaCl. For NaCl tolerance experiments, modified ISP medium 5 was used as the basal medium. The following NaCl concentrations (w/v) were used: 0, 1, 3, 5, 10, 15, 20, 25 and 30%. The pH range for

†These authors contributed equally to this work.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain YIM 90718T is EF158852.
growth was investigated between pH 4.0 and 10.0 at intervals of 1 pH unit using the following buffer systems: pH 4.0–5.0, 0.1 M citric acid/0.1 M sodium citrate; pH 6.0–8.0, 0.1 M KH2PO4/0.1 M NaOH; pH 9.0–10.0, 0.1 M NaHCO3/0.1 M Na2CO3. Catalase activity was determined by production of bubbles after the addition of a drop of 3 % H2O2. Oxidase activity was observed by oxidation of tetramethyl-p-phenylenediamine. Carbon source utilization tests were carried out using GP2 microplates of the Microlog system (Biolog; 95 substrates). Some physiological properties were tested by using the API CORYNE and API ZYM strips (bioMérieux) according to the manufacturer’s instructions. The morphological, cultural and physiological properties of strain YIM 90718T are given in Table 1 and in the species description.

Peptidoglycan was purified and the cell-wall amino acids and peptides in cell-wall hydrolysates were analysed by two-dimensional ascending TLC on cellulose plates using the solvent system of Schleifer & Kandler (1972). The cell-wall sugars were analysed according to the procedures developed by Hasegawa et al. (1983). Polar lipids were extracted, examined by two-dimensional TLC and identified using procedures described previously (Minnikin et al., 1983). Menaquinones were isolated according to Minnikin et al. (1984) and separated by HPLC (Kroppenstedt, 1982). Cellular fatty acid analysis was performed as described by Sasser (1990) using the Microbial Identification System (MIDI). The peptidoglycan type of YIM 90718T was A1γ and galactose was the cell-wall sugar. Phospholipids contained phosphatidylglycerol and diphosphatidylglycerol. The predominant menaquinone was MK-8(H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. All of these features are consistent with the chemotaxonomic description of the genus Brevibacterium (Collins et al., 1980). Details of the phospholipids and menaquinones and the cellular fatty acid profile are reported in the species description.

Table 1. Differential phenotypic characteristics between strain YIM 90718T and its nearest phylogenetic neighbour, B. samyangense SST-8T

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Strain YIM 90718T</th>
<th>B. samyangense SST-8T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony colour</td>
<td>White</td>
<td>Bright yellow</td>
</tr>
<tr>
<td>Rod-coccus cycle</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Temperature range</td>
<td>28–45</td>
<td>10–45</td>
</tr>
<tr>
<td>pH range</td>
<td>6.0–8.0</td>
<td>6.1–10.1</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tween 40</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Sucrose</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>α-D-Lactose</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Malic acid</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>α-Glucosidase</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>α-Chymotrypsin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Polar lipids*</td>
<td>DPG, PG</td>
<td>PG</td>
</tr>
</tbody>
</table>

*DPG, Diphosphatidylglycerol; PG, phosphatidylglycerol.

Data for strain SST-8T were taken from Lee (2006).

Extraction of genomic DNA and PCR amplification of the 16S rRNA gene were done as described by Li et al. (2007). Multiple alignments with sequences of the most closely related members of Brevibacterium and calculations of levels of sequence similarity were carried out using CLUSTAL_X (Thompson et al., 1997). Phylogenetic analyses were performed using three tree-making algorithms: the neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Fitch, 1971) methods. A phylogenetic tree was constructed using the neighbour-joining method from K nucleotide content values (Kimura, 1980) using MEGA version 2.1 (Kumar et al., 2001). The topology of the phylogenetic tree was evaluated by the bootstrap resampling method of Felsenstein (1985) with 1000 replicates. Genomic DNA of strain YIM 90718T for the determination of G+C content was prepared according to the method of Marmur (1961). The G+C content of the DNA was determined by reversed-phase HPLC of nucleosides according to Mesbah et al. (1989).

A neighbour-joining phylogenetic tree (Fig. 1) based on 16S rRNA gene sequence comparison clearly showed that strain YIM 90718T belongs to the genus of Brevibacterium and forms a distinct subclade with B. samyangense. The 16S rRNA gene sequence similarity between strain YIM 90718T and its nearest neighbour, B. samyangense SST-8T, was 96.2 %, and low 16S rRNA gene sequence similarity (<95.5 %) was revealed with other species of the genus Brevibacterium.

Fig. 1. Phylogenetic dendrogram obtained by distance matrix analysis of 16S rRNA gene sequences, showing the position of strain YIM 90718T and its phylogenetic neighbours. Numbers at branch nodes are bootstrap values (1000 resamplings; only values over 50 % are given). The sequence of Micrococcus luteus ATCC 381T was used as an outgroup. Bar, 1 % sequence divergence.
Brevibacterium. The G+C content of the DNA was 70.0 mol%.

On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain YIM 90718T merits recognition within a novel species of the genus Brevibacterium, for which we propose the name Brevibacterium album sp. nov.

Description of Brevibacterium album sp. nov.

Brevibacterium album (al’bumb. L. neut. adj. album white).

Cells are aerobic, Gram-positive, motile, catalase-positive, oxidase-negative, non-spore-forming rods, 1.8 × 4.0–5.0 μm. Colonies are white on most media tested. Colonies are smooth, circular, opaque and approximately 1–2 mm in diameter after 48 h incubation at 37 °C on ISP medium 5 containing 5 % (w/v) NaCl. Growth occurs in the temperature, pH and salt ranges of 28–45 °C, pH 6–8, 0–10 % NaCl (w/v), 0–20 % KCl (w/v) and 0–30 % MgCl₂·6H₂O (w/v). Good growth occurs at 37 °C, pH 7.5, 0–5 % (w/v) NaCl, 0–10 % KCl (w/v) and 0–15 % MgCl₂·6H₂O (w/v). The following substrates are not utilized as sole carbon sources for growth in the Biolog GP2 microplates: β-cyclodextrin, Tween 80, N-acetyl-D-glucosamine, L-fucose, D-glucuronic acid, myo-inositol, lactulose, D-mannitol, methyl β-D-galactoside, methyl α-D-glucoside, palatinose, L-mannose, salicin, trehalose, turanose, D-malic acid, sucinic acid, D-alanine, L-alanyl glycine, putrescine, uridine 5’-monophosphate and fructose 6-phosphate. The following substrates are not utilized in the Biolog GP2 system: α-cyclodextrin, dextrin, glycerin, inulin, mannann, Tween 40, N-acetyl-β-D-mannosamine, amygdalin, L-arabinose, D-arabitol, arbutin, cellobiose, D-fructose, D-galactose, D-galacturonic acid, gentiobiose, α-D-glucose, α-D-lactose, maltose, maltotriose, D-mannose, melezitose, melibiose, methyl α-D-galactoside, 3-methyl glucal, methyl β-D-glucoside, methyl α-D-mannoside, D-psicose, raffinose, D-ribose, sedoheptulose, D-sorbitol, stachyose, sucrose, D-tagatose, xylitol, D-xyllose, acetic acid, α- and γ-hydroxybutyric acid, p-hydroxyphenylacetic acid, α-ketoglutaric acid, α-ketovaleric acid, lactamide, D-lactic acid methyl ester, L-lactic acid, L-malic acid, methyl pyruvate, monomethyl succinate, propionic acid, pyruvic acid, succinamic acid, N-acetyl-L-glutamic acid, D-alaninamide, L-alanine, L-asparagine, L-glutamic acid, glycyll-L-glutamic acid, L-lysine, L-serine, 2,3-butandiol, glycerol, adenosine, 1’-deoxyadenosine, inosine, thymidine, uracil, adenosine 5’-monophosphate, thymidine 5’-monophosphate, glucose 1-phosphate, glucose 6-phosphate and DL-α-glycerol phosphate. In the API CORYNE system, tests for pyrazinamidase, pyrrolidonyl arylamidase, alkaline phosphatase, gelatin hydrolysis and acid production from D-ribose are positive. Tests for nitrate reduction, β-glucuronidase, β-galactosidase, α-glucosidase, N-acetyl-β-glucosaminidase, β-glucosidase (αesculin hydrolysis), urease and acid production from D-glucose, D-xyllose, D-mannitol, maltose, D-lactose, sucrose and glycogen are negative. Using the API ZYM system, acid

and alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, z-chymotrypsin and naphthol-AS-BI-phosphohydrolase tests are positive. Lipase (C14), α-galactosidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase tests are negative. The peptidoglycan is A1γ, meso-diaminopimelic acid directly cross-linked. Cell-wall sugar contains galactose. The phospholipids are phosphatidylglycerol and diphosphatidylglycerol. The menaquinones are MK-8(H₂), MK-7(H₂), MK-6(H₂), MK-8, MK-6 and MK-9(H₂) (ratio of peak areas, 76:10:5:3:2:1). The fatty acid profile contains anteiso-C₁₅:₀ (58.71 %), anteiso-C₁₇:₀ (19.0 %), iso-C₁₅:₀ (12.29 %) and iso-C₁₆:₀ (7.24 %). The G+C content of the DNA of the type strain is 70.0 mol%.

The type strain is YIM 90718T (=DSM 18261T =KCTC 19173T =CCCTCC AB 206112T), isolated from a saline soil in the north-west of China.

Acknowledgements

This research was supported by the National Basic Research Program of China (no. 2004CB719601), the National Natural Science Foundation of China (nos 30560001 and 30600001), the Yunnan Provincial International Cooperative Program (no. 2005GH21), the Ministry of Science of Technology, PR China (2006DFA33550), and the Open Project Program of the Extremophiles Lab of Xinjiang (no. XJYS0203-2005-01). W.-J. L. was supported by the Program for New Century Excellent Talents in University.

References

