Brucella microti sp. nov., isolated from the common vole Microtus arvalis

Holger C. Scholz,1 Zdenek Hubalek,2 Ivo Sedláček,3 Gilles Vergnaud,4,5 Herbert Tomaso,1 Sascha Al Dahouk,1† Falk Melzer,6 Peter Kämpfer,7 Heinrich Neubauer,6 Axel Cloeckaert,8 Marianne Maquart,8 Michel S. Zygmunt,8 Adrian M. Whatmore,9 Enevold Falsen,10 Peter Bahn,11 Cornelia Göllner,11 Martin Pfeffer,1 Birgit Huber,12 Hans-Jürgen Busse12 and Karsten Nöckler11

1Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937 Munich, Germany
2Institute of Vertebrate Biology, Academy of Sciences, Kvetna 8, CZ-60365 Brno, Czech Republic
3Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
4Centre d’Etudes du Bouchet, BP3, 91710 Vert le Petit, France
5Université Paris-Sud, Institut de Génétique et Microbiologie, Orsay, F-91405, France; CNRS, Orsay F-91405, France
6Friedrich Loeffler Institute, Institute of Bacterial Infections and Zoonoses, German Reference Center for Brucellosis, Jena, Germany
7Institute for Applied Microbiology, Justus-Liebig-Universität Giessen, IFZ, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
8INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, F-37380, France
9Veterinary Laboratories Agency, Woodham Lane, Addlestone KT15 3NB, UK
10Culture Collection, Department of Clinical Bacteriology, University of Göteborg, Guldhedsg. 10 S-41346 Göteborg, Sweden
11Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
12Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria

Two Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains CCM 4915T and CCM 4916), isolated from clinical specimens of the common vole Microtus arvalis during an epizootic in the Czech Republic in 2001, were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA (rrs) and recA gene sequence similarities, both isolates were allocated to the genus Brucella. Affiliation to Brucella was confirmed by DNA–DNA hybridization studies. Both strains reacted equally with Brucella M-monospecific antiserum and were lysed by the bacteriophages Tb, Wb, F1 and F25. Biochemical profiling revealed a high degree of enzyme activity and metabolic capabilities not observed in other Brucella species. The omp2a and omp2b genes of isolates CCM 4915T and CCM 4916 were indistinguishable. Whereas omp2a was identical to omp2a of brucellae from certain pinniped marine mammals, omp2b clustered with omp2b of terrestrial brucellae. Analysis of the bp26 gene downstream region identified strains CCM 4915T and CCM 4916 as Brucella of terrestrial origin. Both strains harboured five to six copies of the insertion element IS711, displaying a unique banding pattern as determined by Southern blotting. In comparative multilocus VNTR (variable-number tandem-repeat) analysis (MLVA) with 296 different genotypes, the two isolates grouped together, but formed a separate

†Present address: RWTH University of Aachen, Department of Internal Medicine III, Pauwelsstraße 30, D-52074 Aachen, Germany.

Abbreviations: MLST, multilocus sequence typing; MLVA, multilocus VNTR (variable-number tandem-repeat) analysis; RTD, routine test dilution.
The GenBank/EMBL/DDBJ accession numbers for the gene sequences omp22, omp25, omp25b, omp31 and omp31b of strain CCM 4915T are AM712379, AM712381, AM712383, AM712385 and AM712387, respectively.
At the time of writing, the genus *Brucella* comprises the six species *Brucella melitensis*, *Brucella abortus*, *Brucella suis*, *Brucella canis*, *Brucella neotomae* and *Brucella ovis* (Corbel & Brinley-Morgan, 1984). Two potential novel species of marine mammal origin, *Brucella pinnipedialis* (formerly 'Brucella pinnipediae') and *Brucella ceti* (formerly 'Brucella cetacea'), have been proposed recently (Cloeckaert et al., 2001; Foster et al., 2007). Due to the high DNA–DNA relatedness of >90% among these species, it was suggested that the genus should comprise only one species, *B. melitensis*, with the six biovars Melitensis, Abortus, Canis, Neotomae, Ovis and Suis (Verger et al., 1985). However, in 2003, the ICSP Subcommittee on the Taxonomy of *Brucella* agreed unanimously on a return to pre-1986 *Brucella* taxonomy and as a consequence to the reapproval of the six *Brucella* species with the recognized biovars (Osterman & Moriyón, 2006).

Historically, classification of *Brucella* species was based on natural host preference (main isolation source) and phenotypic characteristics, i.e. CO₂ requirement, H₂S production, dye-sensitivity, oxidative metabolic profiles, lysis by *Brucella*-specific bacteriophages and agglutination with monospecific antisera. Indeed, the last proposal for minimal standards to describe novel *Brucella* species was made by Corbel & Brinley-Morgan (1975) and certainly has to be reviewed, in respect of the newly developed molecular typing techniques and evolutionary findings.

Because of the high DNA–DNA relatedness and phenotypic similarity among the different *Brucella* species, a battery of *Brucella* species, a battery of phenotypic and genotypic tests is required for species delineation and for characterization of potentially novel *Brucella* species. Natural host preference might be used as a further criterion if enough isolates are available.

Recently, molecular approaches, in particular analysis of DNA polymorphism of outer-membrane genes (Cloeckaert et al., 1995, 2001; Vizcaíno et al., 2004), a set of species-differentiating PCR (PCR-restriction fragment length polymorphism; PCR-RFLP) assays (Al Dahouk et al., 2005; Garcia-Yoldi et al., 2006; Ferrao-Beck et al., 2006; Ratushna et al., 2006), multilocus sequence typing (MLST) (Whatmore et al., 2007) and multilocus VNTR (variable-number tandem-repeat) analysis (MLVA) typing assays (Le Flèche et al., 2006; Whatmore et al., 2006; Garcia-Yoldi et al., 2007; Al Dahouk et al., 2007) have been developed that allow differentiation of *Brucella* species and to some extent also at the biovar/biotype level.

Here we describe the classification of two strains, CCM 4915ᵀ and CCM 4916, which had been originally isolated on meat peptone agar (MPA) at 37 °C under aerobic conditions from clinical specimens of diseased wild common voles (*Microtus arvalis*) during a recent epizootic in the Bréclav district in South Moravia, Czech Republic (Hubalek et al., 2007), as a novel species of the genus *Brucella*.

The phenotype of strains CCM 4915ᵀ and CCM 4916 was investigated according to growth behaviour on different media, CO₂ requirement, H₂S production, growth in the presence of dyes (thionine and basic fuchsin), reaction with monospecific A and M antisera, bacteriophage typing (Alton et al., 1988) and light and transmission electron microscopy. Metabolic activity in comparison with other *Brucella* species, *Ochrobactrum anthropi* LMG 3331ᵀ and *Ochrobactrum intermedium* LMG 3301ᵀ was assessed using the Merlin MICRONAUT system (Neubauer et al., 2000). Polar lipids and quinone system were analysed as described by Tindall (1990a, b), Altenburger et al. (1996) and Stolz et al. (2007), and the polymyamine pattern was analysed as described by Busse & Auling (1988) and Stolz et al. (2007), despite the fact that the biomass was not collected from liquid culture but cells were harvested from trypticase soy agar (TSA) and inactivated by acetone.

Molecular analyses comprised AMOS PCR (Bricker & Halling, 1994), multiplex PCR (Garcia-Yoldi et al., 2006), sequence analysis of the outer membrane genes *omp2a*, *omp2b* (Cloeckaert et al., 1995, 2001), *omp22*, *omp25*, *omp25b*, *omp31* and *omp31b* (Vizcaíno et al., 2004), analysis of the bp26 gene downstream region to distinguish between brucellae of marine mammal and terrestrial mammal origin (Cloeckaert et al., 2000), IS711 (IS6501)-typing by Southern blotting analysis (Clavareau et al., 1998), MLVA (Le Flèche et al., 2006; Whatmore et al., 2006; Garcia-Yoldi et al., 2007; Al Dahouk et al., 2007), MLST (Whatmore et al., 2007) and DNA–DNA hybridization studies (Ziemke et al., 1998).

Both isolates grew well at 28 and 37 °C on MPA without supplementary CO₂, forming transparent to whitish
colonies, 1–2 mm in diameter, after 1–2 days of incubation. H₂S was not produced. Good growth was also observed on blood agar and on standard nutrient agar at 28 and 37 °C. Colonies were slightly concave, smooth, with very light brown exopigment; their edges were continuous. After 72 h of growth at 37 °C, cells appeared as large colonies (6–9 mm) with noticeable brownish pigmentation. Cell morphology was examined using a Zeiss light microscope at x 1000 magnification with cells grown for 2 days at 37 °C on standard nutrient agar. Gram staining was performed as described by Gerhardt et al. (1994) with cells grown for 2 days at 28 °C on MPA. Cells were small (<1 µm) Gram-negative coccobacilli or sporadically formed short rods, arranged individually or in irregular clusters. Flagellation

Table 1. Differentiating physiological reactions of *B. microti* sp. nov. in comparison with other *Brucella* and *Ochrobactrum* species.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Substrate class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Glutamine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Amino acid</td>
<td></td>
</tr>
<tr>
<td>1-Histidine hydrochloride</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Amino acid</td>
<td></td>
</tr>
<tr>
<td>D-Histidine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Amino acid</td>
<td></td>
</tr>
<tr>
<td>1-Citulline</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Amino acid</td>
<td></td>
</tr>
<tr>
<td>DAPI</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Amino acid</td>
<td></td>
</tr>
<tr>
<td>Sarcosine hydrochloride</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Amino acid</td>
<td></td>
</tr>
<tr>
<td>Fumaric acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Organic acid</td>
<td></td>
</tr>
<tr>
<td>Succinic acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Organic acid</td>
<td></td>
</tr>
<tr>
<td>α-Ketoglutaric acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Organic acid</td>
<td></td>
</tr>
<tr>
<td>Itaconic acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Organic acid</td>
<td></td>
</tr>
<tr>
<td>Mesoaconic acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Organic acid</td>
<td></td>
</tr>
<tr>
<td>Glutaric acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Organic acid</td>
<td></td>
</tr>
<tr>
<td>Arginine p-nitroanilide</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Amino peptidase</td>
</tr>
<tr>
<td>pNP N-acetyl-β-D-galactosaminide (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Esterase</td>
<td></td>
</tr>
<tr>
<td>oNP N-acetyl-α-D-galactosaminide (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Esterase</td>
<td></td>
</tr>
<tr>
<td>oNP N-acetyl-β-D-galactosaminide (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Esterase</td>
<td></td>
</tr>
<tr>
<td>pNP N-acetyl-β-D-glucosaminide (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Esterase</td>
<td></td>
</tr>
<tr>
<td>pNP N-acetyl-1-thio-β-D-glucosaminide (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Esterase</td>
<td></td>
</tr>
<tr>
<td>4-nitro-α-D-maltoheptaose-4,6-0-ethylidene (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Esterase</td>
<td></td>
</tr>
<tr>
<td>pNP N-acetyl-β-D-glucosamidine (pH 5.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Esterase</td>
<td></td>
</tr>
<tr>
<td>pNP α-L-arabinopyranoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>oNP β-D-xylopyranoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>pNP 1-thio-β-D-galactopyranoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>2-Methoxy-4-(2-nitrovinyl)-phenyl</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>β-D-galactopyranoside</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>pNP β-L-fucopyranoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>pNP β-D-thiofucopyranoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>pNP β-D-mannopyranoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>pNP β-D-maltoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>pNP β-D-lactopyranoside (pH 7.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>pNP β-D-glucuronide (pH 5.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Glucosidase</td>
<td></td>
</tr>
<tr>
<td>Aesculín hydrolysis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Classical reaction</td>
<td></td>
</tr>
<tr>
<td>Voges–Proskauer reaction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Classical reaction</td>
<td></td>
</tr>
<tr>
<td>αNP β-D-galactopyranoside-6-phosphate</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Phosphatase</td>
<td></td>
</tr>
<tr>
<td>pNP phosphate-di(2-amino-2-ethyl-1,3-propanediol) (pH 5.5)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Phosphatase</td>
<td></td>
</tr>
</tbody>
</table>
was determined by transmission electron microscopy (negative staining with 1% uranyl acetate) using a JEM-4000EX electron microscope at a magnification of (negative staining with 1% uranyl acetate) using a JEM-4000EX.

Cells were unflagellated and morphologically indistinguishable from *B. melitensis* 16M^T, whereas flagella were clearly visible on *O. anthropi* LMG 3331^T (data not shown), which is the type species of the phylogenetically closest genus.

Besides the classical biochemical reactions (Hubalek et al., 2007), a total of 191 different carbohydrates, 190 substrates to determine enzymic activity and 191 different substrates for use as a nitrogen source were tested by using the Merlin MICRONAUT identification system (Neubauer et al., 2000). Each reaction was carried out seven times. The results of the differentiating biochemical reactions of strains CCM 4915^T and CCM 4916 in comparison with the other *Brucella* species and their biovars as well as with *Ochrobactrum* species are summarized in Table 1. The results demonstrate that both isolates exhibit outstanding metabolic capabilities with respect to all other brucellae, sharing a series of reactions with *O. anthropi* LMG 3331^T and *O. intermedium* LMG 3301^T. It is remarkable that both strains were positive in the Voges–Proskauer reaction. Additional results of the phenotypic characterization of strains CCM 4915^T and CCM 4916 by classical methods are given in the species description.

The two strains exhibited a quinone system with ubiquinone Q-10 (91–97%) and Q-9 (3–9%). A similar quinone system was detected in *B. melitensis*, with Q-10 (97%) and Q-9 (3%). Their polar lipid profiles consisted of the major compounds phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylylcholine and two unknown aminolipids (AL1 and 2), moderate amounts of an unknown phospholipid PL and small to trace amounts of additional unknown aminolipids (AL3 and 4), two unknown aminophospholipids (APL1 and 2) and five unknown polar lipids (Fig. 1). Two additional lipids, one staining positively with ninhydrin (aminolipid) and the other with molybdenum blue (phospholipid), may be present, showing almost the same chromatographic behaviour as AL1, but their presence could not unambiguously be confirmed because of insufficient resolution from AL1 in the thin-layer chromatography. *B. abortus* NCTC 10093^T and *B. melitensis* 16M^T exhibited almost the same profile (results not shown), but unknown aminolipid AL2 was not detectable in these two strains and phosphatidymonomethylethanolamine was present either in traces or lacking. The polyamine patterns of strains CCM 4915^T and CCM 4916 contained the major compound spermidine (77.0–80.2%), putrescine (14.0–16.8%), 1,3-diaminopropane (3.4–5.0%), *sym*-homospermidine (0.8–1.9%) and spermine (0.4–0.5%). Similar polyamine patterns were detected in *B. melitensis* 16M^T (74.2% spermidine, 18.6% putrescine, 3.0% 1,3-diaminopropane, 3.5% *sym*-homospermidine and 0.4% spermine) and representative species of the genus *Ochrobactrum*, including *O. intermedium* LMG 3301^T (results not shown), the nearest phylogenetic relative of the genus *Brucella*. In contrast, species of the genus *Pseudochrobactrum* exhibit a polyamine pattern lacking *sym*-homospermidine (Kämpfer et al., 2006, 2007).

In the IS711-based AMOS multiplex-PCR, a 1900 bp fragment, not amplified from other *Brucella* species, was generated. Using single species-specific primer pairs, it could be demonstrated that the fragment was amplified with the *B. ovis*-specific primers (Hubalek et al., 2007). Sequencing of the PCR product and subsequent comparative BLASTN analyses revealed that the IS element has a homology of 97% (3.4–5.0%) to the IS711 of *B. melitensis* 16M^T (786 bp), neither deletions, as reported for *B. canis* and *B. ovis* (Vizcaíno et al., 2004), nor inversion of the *omp25* gene (785 bp), as described for the majority of *B. ceti* strains (Vizcaíno et al., 2004), were detected.
The omp2a genes were 100% identical to omp2a of the marine Brucella pinnipedialis strain B2/94T (GenBank accession no. AF300819) and some other Brucella strains isolated from marine mammals, i.e. Brucella pinnipedialis strain 6516/9 (DQ059380) and Brucella sp. JM13/00 (AB126348). In contrast, the omp2b genes were mostly related to omp2b of Brucella strains from terrestrial mammals with one to three mismatches, (99–98% similarity). The combination of omp2a from marine mammal and omp2b from terrestrial mammal origin has not yet been described.

A phylogenetic neighbour-joining tree constructed with omp2a (1104 nt) and omp2b (1089 nt) sequences using CLUSTREE neighbour-joining analysis. The significance of each branch is indicated by a bootstrap percentage calculated for 1000 subsets. The tree was rooted by outgrouping sequence omp2a of O. anthropi LMG 3331T.

The PCR fragment size of the bp26 gene downstream region was 1029 bp, which is characteristic for terrestrial mammal brucellae (data not shown).

The MLVA data obtained with strains CCM 4915T and CCM 4916 were compared with 424 Brucella isolates corresponding to 296 genotypes that have previously been analysed by Le Fleche et al. (2006), Garcia-Yoldi et al. (2007) and Al Dahouk et al. (2007). Cluster analysis was performed as described by Al Dahouk et al. (2007) using eight-minisatellite (panel 1) and seven-microsatellite VNTR markers (panel 2) and the categorical distance coefficient and the unweighted pair-group method using arithmetic averages (UPGMA) clustering method. Briefly, the seven microsatellites are divided in two groups, taking implemented Kimura two-parameter model. In order to assess probabilities of the nodes, 1000 bootstrap resamplings were performed. The tree was rooted with omp2a of Ochrobactrum anthropi LMG 3331T as the outgroup.

The PCR fragment size of the bp26 gene downstream region was 1029 bp, which is characteristic for terrestrial mammal brucellae (data not shown).

The MLVA data obtained with strains CCM 4915T and CCM 4916 were compared with 424 Brucella isolates corresponding to 296 genotypes that have previously been analysed by Le Fleche et al. (2006), Garcia-Yoldi et al. (2007) and Al Dahouk et al. (2007). Cluster analysis was performed as described by Al Dahouk et al. (2007) using eight-minisatellite (panel 1) and seven-microsatellite VNTR markers (panel 2) and the categorical distance coefficient and the unweighted pair-group method using arithmetic averages (UPGMA) clustering method. Briefly, the seven microsatellites are divided in two groups, taking implemented Kimura two-parameter model. In order to assess probabilities of the nodes, 1000 bootstrap resamplings were performed. The tree was rooted with omp2a of Ochrobactrum anthropi LMG 3331T as the outgroup.

The PCR fragment size of the bp26 gene downstream region was 1029 bp, which is characteristic for terrestrial mammal brucellae (data not shown).

The MLVA data obtained with strains CCM 4915T and CCM 4916 were compared with 424 Brucella isolates corresponding to 296 genotypes that have previously been analysed by Le Fleche et al. (2006), Garcia-Yoldi et al. (2007) and Al Dahouk et al. (2007). Cluster analysis was performed as described by Al Dahouk et al. (2007) using eight-minisatellite (panel 1) and seven-microsatellite VNTR markers (panel 2) and the categorical distance coefficient and the unweighted pair-group method using arithmetic averages (UPGMA) clustering method. Briefly, the seven microsatellites are divided in two groups, taking
into account their mutation rate (Garcia-Yoldi et al., 2007). Panel 2A comprises the most stable microsatellites Bruce 18, 19, 21 and 30. Panel 2B comprises the highly variable markers Bruce 07, 09 and 16. In the clustering analysis, markers from panel 1, 2A and 2B were given an individual weight of respectively 2, 1 and 0.3. In this analysis, the two strains clustered together (and differed from each other by 4 out of 16 VNTR loci, including one marker from panel 2A and the three markers from panel 2B), but grouped separately from all other known Brucella species and their biovars (Fig. 3). Because of the large number of strains, clusters were condensed. B. neotomae reference strain 5K33 and B. pinnipedialis strain B2/94 appear as closest neighbours in this analysis, whereas the two B. suis biovar 5 strains are more distantly related.

In MLST analysis (Whatmore et al., 2007), the two strains clustered separately from other Brucella strains most closely related to B. suis biovar 5 (ST19) and marine mammal ST25, from which they differ at two out of nine loci (Fig. 4). The MLST profile was 1-11-4-2-1-3-5-2-1. In the IS711 insertion element typing analysis using the Southern blotting technique, the two isolates were indistinguishable from each other, but exhibited a unique banding pattern when compared with other Brucella species, corresponding to five to six copies (not shown).

Results from DNA–DNA hybridizations using labelled DNA of B. melitensis 16M\(^T\) showed 84.1 % ± 0.7 DNA relatedness with strain CCM 4915\(^T\). These results are in agreement with previous reports (Verger et al., 1985) which showed that, if the 70 % DNA-relatedness threshold value is applied, species of this genus cannot be separated based on results from DNA–DNA hybridizations. The DNA relatedness to the phylogenetically closest neighbour, O. intermediate LMG 3301\(^T\), was 55.5 %.

In summary, from the results of the phenotypic and genotypic analyses, it is evident that isolates CCM 4915\(^T\) and CCM 4916 are members of the genus Brucella, but can be clearly differentiated from all established species of this genus, including their biovars. Hence, by applying the Brucella species concept suggested by the ICSP Subcommittee on the taxonomy of Brucella (Osterman & Moriyón, 2006), the two strains represent a novel species of the genus Brucella, for which we propose the name Brucella microti sp. nov.

Future investigations such as whole-genome sequencing and studies on host cell interactions will provide further insight in the evolution of brucellae and host–pathogen interactions.

Description of Brucella microti sp. nov.

Brucella microti (mi.cro’ti. L. gen. n. microti of Microtus, after the vole genus from which the first strains of this species have been isolated).

Cocci, coccobacilli or short rods, 0.5–0.8 μm in diameter and 0.6–1.4 μm in length. Arranged individually or in irregular clusters. Gram-negative. Aerobic, non-fermentative, non-motile, non-spore-forming. Oxidase-, catalase- and urease-positive. Nitrate and nitrite are reduced (with gas formation from nitrate). No production of H\(_2\)S.

Fig. 3. Condensed dendrogram of clustered MLVA-16 genotypes obtained with 424 Brucella isolates corresponding to 296 different genotypes. Bar, percentage of sequence divergence.
arginine dihydrolase, lysine decarboxylase, ornithine de-carboxylase, fluorescein (King’s B medium). Negative on Simmons’ citrate, malonate and acetamide and no growth in broth with 6.5% NaCl. Positive (API 20NE) for D-glucose, maltose, L-arabinose, D-mannose, N-acetylglucosamine and adipic acid. Negative for D-mannitol, citric acid, gluconate, capric acid, malic acid and phenylacetic acid. Acid is produced from glucose, maltose, fructose and xylose in OF medium (Difco). Positive (API ZYM) for acid phosphatase, alkaline phosphatase, leucine arylamidase, valine arylamidase, cystine arylamidase, β-glucosidase and esterase lipase. Enzymes absent on API ZYM are esterase, lipase, α- and β-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase. Starch, casein, DNA, tyrosine, aesculin, ONPG, Tween 80, lecithin and gelatin are not hydrolysed. Differentiating physiological reactions (MICRONAUT) of strains CCM 4915T and CCM 4916 with respect to other Brucella species and biovars and Ochrobactrum anthropi LMG 3331T are given in Table 1. Cells are sensitive to gentamicin, tobramycin, cotrimoxazole (trimethoprim plus sulphamethoxazole) and ofloxacin, but resistant to colistine, piperacillin, ceftazidine and tazobactam. Non-fastidious; good growth occurs on MPA, TSA, blood agar and standard nutrient agar at 25–42 °C. Beige, translucent to whitish colonies with light-brown exopigment and entire edges are formed within 24 h, with a diameter of approximately 2 mm. Good growth does not require CO₂, supplementary serum or blood. No haemolysis is observed. Isolates grow with thionine at dilutions of 1/25 000, 1/50 000 and 1/100 000. Cultures are lysed by Tb, F1 and F25 phages at routine test dilution (RTD) 10⁴ but not at RTD and by Weybridge phage (Wb) at both dilutions. Both strains agglutinate with monospecific anti-M serum up to a dilution of 1:80. The quinone system is composed of the major compound ubiquinone Q-10 and minor amounts of Q-9. Predominant polar lipids are phosphatidyethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and two unknown aminolipids, moderate amounts of an unknown phospholipid PL and small to trace amounts of additional unknown aminolipids (AL3 and 4), two unknown aminophospholipids (APL1 and 2) and five unknown polar lipids. The polyamine pattern contains the major compound spermidine, moderate amounts of putrescine and small amounts of 1,3-diaminopropane, sym-homospermidine and spermine.

The type strain is CCM 4915T (≡ BCCN 07-01T = CAPM 6434T) isolated in 2000 from the liver of Microtus arvalis, South Moravia, Czech Republic. Another strain of this species is CCM 4916.

Acknowledgements

We are grateful to Csilla Lodri, Stefan Schatz and Angelika Draeger for excellent technical assistance. We thank Philippe Le Fleche for the MLVA typing and Mark S. Koylass for MLST analysis of strains CCM 4915T and CCM 4916. The development of genotyping methods for the precise strain identification of dangerous pathogens as part of microbial forensics is supported by the French DGA (Délegation Générale pour l’Armement). The work of B.H. and H.-J.B. was
References

