Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer

Angela S. Lindner,1 Adriana Pacheco,1 Henry C. Aldrich,2† Andria Costello Staniec,3 Ilker Uz4† and David J. Hodson1§

1Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450, USA
2Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
3Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244-1240, USA
4Department of Soil and Water Sciences, University of Florida, Gainesville, FL 32611-0290, USA

Strain CSC1T, a Gram-negative, aerobic, methane-oxidizing bacterium, was isolated from an uncontaminated aquifer nearly 20 years ago. Based on 16S rRNA gene sequence similarity, this strain was identified as a member of the *Alphaproteobacteria*, most closely related to an uncultured member of the *Methylocystaceae* as well as two cultured organisms, *Methylocystis* sp. L32 and *Methylocystis* sp. SC2. This strain differed from extant species in cell shape, size, expression of soluble methane monooxygenase and its unique spiny surface layers, composed of polysaccharide. DNA–DNA hybridization results showed only 3.8% relatedness with *Methylocystis echinoides* NCIMB 13100 and 41.1% relatedness with *Methylocystis rosea* SV97T. Based on these genotypic and physiological differences, this isolate is proposed as a member of a novel species of the genus *Methylocystis, Methylocystis hirsuta* sp. nov. (type strain CSC1T = ATCC BAA-1344T = DSM 18500T).

Species of the genus *Methylocystis* are strictly aerobic, Gram-negative bacteria that are able to grow on one-carbon compounds (e.g. methane or methanol) (Bowman et al., 1993). The genus *Methylocystis* belongs to the class *Alphaproteobacteria* and currently consists of three species with standing in nomenclature, *Methylocystis parvus, Methylocystis echinoides* and *Methylocystis rosea* (Whittenbury et al., 1970; Gal’chenko et al., 1977; Bowman et al., 1993; Wartiainen et al., 2006). Numerous *Methylocystis* strains have been identified in a variety of environments, including lake, ocean, marsh and creek sediments and water, coal mine drainage water and the roots of plants (Whittenbury et al., 1970; Gal’chenko et al., 1977; Bowman et al., 1993; Hanson & Hanson, 1996; Calhoun & King, 1998; Heyer et al., 2002).

Species of the genus *Methylocystis* are type II methanotrophs, classified, in part, by their possession of paired membranes aligned with the cell periphery, the serine pathway and predominant fatty acids with 18 carbons (Hanson & Hanson, 1996; Graham et al., 2002). Until recently, it was believed that all type II methanotrophs, including *Methylocystis* species, express the particulate form of methane monooxygenase (pMMO), and, with the exception of *Methylocystis parvus* OBBP† and the recently reported *Methylocystis rosea* SV97T, all express the soluble form of methane monooxygenase (sMMO) at low copper concentrations (Stanley et al., 1983; Prior & Dalton, 1985; Choi et al., 2003; Wartiainen et al., 2006). *Methylocystis parvus* OBBP† and *Methylocystis rosea* SV97T do not possess genes encoding sMMO (Tsien & Hanson, 1992; McDonald et al., 1997; Lloyd et al., 1999; Wartiainen et al., 2006). The genera *Methylocella* and *Methylocaapsa* are classified as type II methanotrophs; however, they possess morphological and...
physiological characteristics that are distinctly different from those of other type II methanotrophs (Dedysh et al., 2000, 2002). pMMO has not been observed in Methylocella, for example, and species in this genus have been shown to be facultatively methanotrophic, capable of growing on multi-carbon substrates (Dedysh et al., 2005; Theisen & Murrell, 2005). All Methylocystis species produce oxidase and catalase, are non-motile and are capable of fixing atmospheric nitrogen (Hanson & Hanson, 1996).

The focus of this paper is strain CSC1T, a type II methanotroph isolated in the mid-1980s from an uncontaminated groundwater aquifer at Moffet Naval Air Station in Mountain View, CA, USA (Henry & Grbić-Galic‘, 1990). This methanotroph expresses sMMO under copper-limiting conditions and is capable of oxidizing aliphatic and aromatic compounds (Henry & Grbić-Galic‘, 1991; Adriaens, 1994; Adriaens & Grbić-Galic‘, 1994; Hršak, 1996; Hršak & Begonja, 1998). Despite its being the focus of these numerous studies aimed primarily at its contaminant degradation potential, strain CSC1T has not been characterized and differentiated from other known type II methanotrophs. This study provides phenotypic and genotypic analysis of this groundwater isolate. The formal taxonomic description of this novel Methylocystis bacterium, strain CSC1T, is reported. Differences in various characteristics of strain CSC1T compared with other known methanotrophs are described, and its unique surface features broaden the observed physiological traits of methanotrophic bacteria.

Strain CSC1T was obtained from Dr Dubravka Hršak (Rudjer Boskovic Institute, Zagreb, Croatia) and Methyllosinus trichosporium OB3bT was obtained from Dr Jeremy Semrau (Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA). Methylocystis parvus NCIMB 11129T (=OBBPT) and Methylosinus echinoides NCIMB 13100 were obtained from the NCIMB (Aberdeen, UK). Methylocystis rosea ATCC BAA-1196T (=SV97T) was obtained from the American Type Culture Collection. The basal medium used for growth when culturing for sMMO expression was nitrate mineral salts (NMS) medium with no added copper, as described previously (Whittenbury et al., 1970; Lontoh & Semrau, 1998). Ultrapure water used in all culturing was mineral salts (NMS) medium with no added copper, as growth when culturing for sMMO expression was nitrate limiting conditions and is capable of oxidizing aliphatic and aromatic compounds (Henry & Grbić-Galic‘, 1991; Adriaens, 1994; Adriaens & Grbić-Galic‘, 1994; Hršak, 1996; Hršak & Begonja, 1998). Despite its being the focus of these numerous studies aimed primarily at its contaminant degradation potential, strain CSC1T has not been characterized and differentiated from other known type II methanotrophs. This study provides phenotypic and genotypic analysis of this groundwater isolate. The formal taxonomic description of this novel Methylocystis bacterium, strain CSC1T, is reported. Differences in various characteristics of strain CSC1T compared with other known methanotrophs are described, and its unique surface features broaden the observed physiological traits of methanotrophic bacteria.

Genomic DNA was isolated from strain CSC1T, grown to exponential phase, by a standard method (Ausubel et al., 1989). The 16S rRNA gene was amplified by PCR using the universal bacterial primers 27f and 1492r (Lane, 1991). PCR primers used for sMMO were mmoXA (5’-ACCAAGGARGARCTTCAAG-3’) and mmoXB (5’-TGGCATCRTC-ARCGCTC-3’) (Auman et al., 2000); primers for methanol dehydrogenase (MDH) were mxa f1003 (5’-GGGGCAAC-AACTGGGCGCTGTG-3’) and mxa r1561 (5’-GGGGCGACGATGAAAGGCTCCCC-3’) (McDonald & Murrell, 1997); and primers for pMMO were A1891 (5’-GGNGACTGGACCTTCTGG-3’) and A682r (5’-GAASGCGNGAAGAASGC-3’) (Holmes et al., 1995).

All PCRs were carried out in a PTC-200 Thermo Cycler (MJ Research) using 25 μl reactions and Premix Taq polymerase (Takara). Conditions used for the different primer sets have been described previously (Holmes et al., 2000; Costello & Lidstrom, 1999; Holmes et al., 1995). The PCR amplification products were ligated to vector pCR2.1 (Invitrogen) and transformed to competent Escherichia coli TOP10F cells according to the vendor’s instructions. Plasmid DNA from transformants was isolated and the inserts were sequenced by the Biotechnology Resource Center at Cornell University (Ithaca, NY, USA).

Sequences were compared with previously identified sequences in the NCBI database using BLAST (Altschul et al., 1990). Sequences identified in BLAST and sequences of extant methanotrophs were aligned and adjusted manually with CLUSTAL_X version 1.82 (Thompson et al., 1997). Phylogenetic trees were generated by the neighbour-joining method in CLUSTAL_X and viewed using TreeView (Page, 1996).
DNA–DNA hybridizations between strain CSC1ᵀ, *Methylocystis echinoides* NCIMB 13100 and *Methylocystis rosea* SV97ᵀ were performed by the DSMZ (Braunschweig, Germany) using 2 × SSC buffer (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0) plus 10% (v/v) formamide at an optimal renaturation temperature of 68 °C.

Earlier studies reported strain CSC1ᵀ as a Gram-negative, non-motile coccobacillus, possessing an internal membrane structure characteristic of type II methanotrophs (paired membranes inside the periphery of the cell), and forming lipid inclusions (Henry & Grbić-Galić, 1990, 1991; Hršak & Begonja, 1998). Fang et al. (2000) concluded that the intact phospholipids of strain CSC1ᵀ clustered within the type II grouping, clearly distinct from groupings of type I methanotrophs. This study extended the previous phenotypic characterization studies by assessing exospor and rosette formation, growth at 37 °C, the presence of a surface (S-) layer, carbon and nitrogen source utilization and lysis by 2% (w/v) SDS, all identified by Bowman et al. (1993) or Hanson & Hanson (1996) as differentiating characteristics among type II methanotrophic species.

Exospor formation was determined with 1- to 2-week-old broth cultures grown as described previously following the methods of Smibert & Krieg (1981). Five millilitres of culture was transferred in duplicate to fresh NMS medium for controls. A second set of duplicates was heated in a water bath at 80 °C for 20 min for pasteurization. Growth was monitored after streaking the controls and treated cultures onto solid NMS plates and incubation (as described previously) for 21 days. Exospores were monitored using light microscopy, also used to determine rosette formation and motility (Norris & Ribbons, 1971). Growth in liquid culture was monitored using 250 ml nephlos flasks with the same stopper assembly described above and a UV/Vis spectrophotometer (Fisher Scientific) at a wavelength of 600 nm.

Nitrogen and carbon sources were tested using NMS basal medium. To test for alternative nitrogen sources, KNO₃ was replaced with 0.1% (w/v) anhydrous L-asparagine (MP Biomedicals), L-aspartate (Pfaltz & Bauer) or L-glutamine (MP Biomedicals) (all shown to support growth of *Methylocystis echinoides* IMET 10491ᵀ and *Methylocystis parvus* OBBPᵀ; Bowman et al., 1993) or L-lysine monohydrochloride (Sigma-Aldrich), L-ornithine monohydrochloride (MP Biomedicals) or putrescine (MP Biomedicals) (all shown to support growth of *Methylthanosinus trichosporium* OB3bᵀ; Bowman et al., 1993). NMS medium with added KNO₃ and without a nitrogen source respectively served as a positive and negative control, and the latter control also served as a test for growth in the absence of added nitrogen. To test for alternative carbon sources, 0.2% (w/v) methylamine hydrochloride (Alfa Aesar), DMSO, methanol or glucose (Fisher Scientific) was added. Over the 30-day test period, flasks were prepared in duplicate and transfers were made to fresh medium supplied with the appropriate nitrogen or carbon source every 4 days.

Growth measurements were performed as described previously.

Lysis by 2% (w/v) SDS (Fisher Scientific) was determined by direct microscopic observation using cells harvested at three-quarters-exponential phase. Cells were centrifuged at 2460 g for 20 min, resuspended in the 2% SDS stock solution for approximately 2 h and observed using an oil immersion phase-contrast microscope (Zeiss).

Transmission electron microscopy (TEM) was used to observe cells of strain CSC1ᵀ expressing MMO, lipid inclusions and other fine structural features, including S-layers. Liquid cultures were incubated for 2–3 days and were fixed for 30 min at room temperature with caddylate-buffered glutaraldehyde both with and without 0.1% Alcian blue (Fassel et al., 1992), stained for 30 min at room temperature with 1% caddylate-buffered osmium tetroxide and then stained for 50 min in 1% aqueous uranyl acetate. After dehydrating in increasing strengths of ethanol, cells were embedded in both Spurr’s and Epon resins (Dykstra, 1993). Thin sections were prepared and stained with lead citrate and examined on a Zeiss EM-10CA transmission electron microscope. *Methylocystis echinoides* NCIMB 13100 was observed by negative stain using 1% aqueous uranyl acetate applied to cell suspensions on Formvar-coated grids.

In order to provide evidence that the observed S-layer is glycoprotein, two additional cytochemical approaches were utilized. Images of Alcian blue-stained specimens were compared with those with no Alcian blue in the glutaraldehyde fixative, since Alcian blue stains polysaccharide moieties (Lewis & Knight, 1977). Secondly, thin Epon sections on Formvar-coated nickel grids were first exposed to 3% H₂O₂ for 15 min at room temperature to remove osmium and then exposed to 1% aqueous Pronase solution (Sigma) for 60–90 min at 35 °C to remove protein components from the section (Lewis & Knight, 1977; Monneron & Bernhard, 1966). Controls included H₂O₂ alone and water substituted for the Pronase step.

The phylogenies of the 16S rRNA gene sequences and the *pmoA, mmoX* and *mxaF* partial gene sequences of strain CSC1ᵀ and other methanotroph strains, respectively shown in Figs 1 and 2 and Supplementary Fig. S1(a, b) available in IJSEM Online, are consistent with placement of strain CSC1ᵀ with other known type II methanotrophs. The 16S rRNA phylogeny of strain CSC1ᵀ clearly places it within a branch of the *Alphaproteobacteria* dominated by *Methylocystis* species. Determination of sequence similarities revealed that the closest relatives with validly published names were *Methylocystis rosea* SV97ᵀ (99%), *Methylocystis parvus* OBBPᵀ (97%) and *Methylocystis echinoides* IMET 10491ᵀ (97%) (Fig. 1). Lower 16S rRNA gene similarities of 96 and 95%, respectively, were observed between strain CSC1ᵀ and the *Methylthanosinus* type strains *Methylthanosinus sporium* NCIMB 11126ᵀ and *Methylthanosinus trichosporium* OB3bᵀ. The nearest defined neighbours of strain CSC1ᵀ are *Methylocystis* sp. IMET 10486 and two uncultured
members of the *Methylocystaceae* (LR1 and LO13.7), each sharing 99% 16S rRNA gene sequence similarity with strain CSC1^T. The greatest similarity of the partial *pmoA* gene sequence of strain CSC1^T was observed with various uncultured bacteria [uncultured bacterium DGGE band P5 (99%), LOPB13.1 (99%) and SL-1.52 (98%)] (Fig. 2). Those strains from species with validly published names most closely matching the *pmoA* partial gene sequence of

![Image](https://via.placeholder.com/150)

Fig. 1. Phylogenetic relationship of the 16S rRNA gene sequences of strain CSC1^T and other type II methanotrophs and related strains. The dendrogram shows the results of an analysis in which neighbour-joining was used. Numbers on branches represent bootstrap percentages greater than 50%, derived from 1000 replicates. Bar, 0.01 substitutions per nucleotide site. 16S rRNA gene sequences from two non-methanotrophic alphaproteobacteria were used as an outgroup.

![Image](https://via.placeholder.com/150)

Fig. 2. Phylogenetic relationship of the partial *pmoA* gene sequences of strain CSC1^T and members of related genera. Numbers on branches represent bootstrap percentages greater than 50%, derived from 1000 replicates. Bar, 0.1 substitutions per nucleotide site. *amoA* sequences of two ammonia-oxidizing bacteria were used as an outgroup.
strain CSC1^T were again *Methylocystis rosea* SV97^T^ (98 %), *Methylocystis echinoides* IMET 10491^T^ (92 %) and *Methyl-
ocorr{}ocystis parvus* OBBPT^T^ (92 %).

Given the suspected placement in the genus *Methylocystis*, DNA–DNA hybridization was performed with *Methyl-
ocorr{}ocystis echinoides* NCIMB 13100 and *Methylocystis rosea* SV97^T^, yielding relatedness values of 3.8 and 41.1 %, respectively. Strain CSC1^T^ therefore does not belong to the species *Methylocystis echinoides* or *Methylocystis rosea*, according to the 70 % threshold value recommendation of Wayne et al. (1987).

As shown in Table 1, rosette formation by cells of strain CSC1^T^ was not observed. No growth was evident after pasteurization, indicating that this methanotroph is not resistant to heat, and growth was also not observed at 37 °C. Optimum growth was observed at approximately 30 °C. As reported previously for *Methylosinus trichosporium* OB3b^T^, *Methylocystis echinoides* IMET 10491^T^ and *Methylocystis parvus* OBBPT^T^ (Bowman et al., 1993), strain CSC1^T^ was not lysed by a 2 % solution (w/v) of SDS, but 10 % (w/v) SDS did lyse the cells. It was shown to be capable of growing on alternative nitrogen sources L-asparagine, L-aspartate, L-glutamine, L-ornithine and putrescine; however, no growth was visible in the presence of L-lysine. Growth was also observed in nitrogen-free NMS medium. As reported for *Methylosinus trichosporium* OB3b^T^, *Methylocystis echinoides* IMET 10491^T^ and *Methylocystis parvus* OBBPT^T^ by Bowman et al. (1993), of the four alternative carbon sources methymaldehyde, dimethyl-sulfide, methanol and glucose tested, only methanol supported growth of strain CSC1^T^.

Expression of sMMO upon culturing strain CSC1^T^ in NMS medium with no copper was confirmed by formation of a purple colour after incubation with naphthalene and addition of o-dianisidine, whereas controls with acetylene and with cells cultured in the presence of copper yielded no colour. These results strongly suggest that sMMO was expressed in strain CSC1^T^ when grown without copper and was responsible for the naphthalene oxidation.

TEMs of strain CSC1^T^ grown in the presence of copper verify the type II membrane structure of paired membrane lamellae in the peripheral cytoplasm (Fig. 3a, b). In thin section, a variety of cell shapes were visible at low magnification (Fig. 3a), but elongated or dumbbell shapes

Table 1. Phenotypic characteristics that differentiate strain CSC1^T^ from related type strains

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony colour</td>
<td>Cream</td>
<td>White/buff/yellow</td>
<td>White/buff/pale pink</td>
<td>White/tan/pale pink</td>
</tr>
<tr>
<td>Cell morphology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width (µm)</td>
<td>0.3–0.6</td>
<td>0.5–1.5</td>
<td>0.6</td>
<td>0.3–0.5</td>
</tr>
<tr>
<td>Length (µm)</td>
<td>0.7–1</td>
<td>2–3</td>
<td>0.8–1.2</td>
<td>0.5–1.5</td>
</tr>
<tr>
<td>Shape</td>
<td>Dumbbell</td>
<td>Pear</td>
<td>Cocccbacillus, rod</td>
<td>Cocccbacillus</td>
</tr>
<tr>
<td>S-layers</td>
<td>Sharp, solid spines*</td>
<td>Bead-like/filamentous</td>
<td>Tubular spines</td>
<td>–</td>
</tr>
</tbody>
</table>

Accumulation of:
- Polyposphate: +
- PHB: –
- Motility: –
- Rosettes: –
- Heat resistance: –
- Growth at 37 °C: –

Usage of nitrogen sources
- L-Asparagine: +
- L-Aspartate: +
- L-Glutamine: +
- L-Lysine: –
- L-Ornithine: +
- Putrescine: +

Data from this study.

Contrary to the reported characteristics of *Methylocystis echinoides* IMET 10491^T^ (Bowman et al., 1993), our experiments showed *Methylocystis echinoides* NCIMB 13100 to accumulate PHB and to grow at 37 °C.

Bowman et al. (1993) reported 75–87 % of strains positive.
of cells predominated. Many of the other profiles could represent dumbbell shapes sectioned in different planes. Cells grown without copper contained only a few internal membranous lamellae (data not shown). Polyphosphate bodies and lipid inclusions were common.

As shown in Fig. 3(a, b), distinctive S-layers, probably composed of glycoprotein, were revealed with TEM of ultrathin sections of strain CSC1T fixed with Alcian blue. These spiked S-layer structures, 50–75 nm in height, covered the entire surface of the cell wall. We have seen that the cytoplasm of cells of strain CSC1T embedded in Spurr resin will sometimes shrink away from the wall, lending support to the idea that the S-layer is more rigid than the rest of the wall (data not shown). This shrinkage does not occur in cells embedded in Epon resin (e.g. cells in Fig. 3a, b).

S-layers have been observed in both type I and II methanotrophs isolated from a wide range of environments, including members of the genera *Methylomicrobium*, *Methylomonas*, *Methylosinus* and *Methylocystis* (Fassel et al., 1992; Sorokin et al., 2000; Trotsenko & Khmelenina, 2002). Type II *Methylosinus trichosporium* OB3bT was found to have bead-like S-layer structures and occasional filamentous material in the outer envelope (Fassel et al. 1990, 1992). Similar bead-like S-layer structures were observed by Fassel et al. (1992) in the cell envelope of *Methylocystis* sp. strain Lake Washington, but not in a strain the authors referred to as *Methylocystis parisi*, and the authors concluded that the absence of these structures in the latter species could be a species variation. Both *Methylocystis* species possessed considerable filamentous material, however (Fassel et al., 1992). *Methylocystis echi- noides* was reported to have rigid tubular structures arranged radially at the cell surface (Gal’chenko et al., 1977), features that are absent from *Methylocystis parvis* OBBP^T (Heyer et al., 2002). In this study, negative-stain preparations of *Methylocystis echi- noides* NCIMB 13100 show ellipsoid cells with square-ended tubular projections (Fig. 3c) that appear striated at high magnification (Fig. 3d), as reported by Haubold (1977) for this strain but not in the original description of Gal’chenko et al. (1977). Haubold (1977) concluded that the tubes of *Methylocystis echi- noides* IMET 10491^T were smaller in diameter than those described by Gal’chenko et al. (1977). The tubular appearance of the S-layers of *Methylocystis echi- noides* NCIMB 13100 (Fig. 3c, d) and the isolate described by Gal’chenko et al. (1977) is considerably different from the solid-sharp spines of strain CSC1^T.

To elucidate further the nature of the spiked S-layer in strain CSC1^T, cells fixed with glutaraldehyde alone (Supplementary Fig. S2a) were compared with those fixed with an Alcian blue/glutaraldehyde mixture.
(Supplementary Fig. S2b). Alcian blue is a differential stain for polysaccharide (Lewis & Knight, 1977), and the spines visible in Supplementary Fig. S2(b) were considerably darker, longer and more distinct than the same structures visible in Supplementary Fig. S2(a), even though Supplementary Fig. S2(b) is at a lower magnification. This strongly indicates polysaccharide content. After treatment with H₂O₂ to remove osmium from the Epon sections, lost the entire S-layer (Supplementary Fig. S2, c, d), indicating that the layer contains considerable protein.

Sequence analysis of the 16S rRNA gene (Fig. 1) and partial gene sequences of pmoA (Fig. 2), mmoX (Supplementary Fig. S1a) and mxaF (Supplementary Fig. S1b) supports placement of strain CSC1T within the closely related genera *Methylocystis* and *Methylosinus*. Phenotypic results (Table 1) show that strain CSC1T can be differentiated from *Methylosinus trichosporium* OB3bT, *Methylocystis echinoides* IMET 10491T and *Methylocystis parvus* OBPP7. All of the strains included in Table 1 have been reported to be oxidase- and catalase-positive, possess colonies that are of opaque transparency, smooth edge and convex elevation and grow on methanol and in nitrogen-free medium. Unlike the known strains, strain CSC1T was not capable of growth at 37 °C; however, all of the methanotrophs grow optimally near 30 °C. Unlike *Methylocystis echinoides* IMET 10491T, strain CSC1T was observed to accumulate poly-β-hydroxybutyrate (PHB). Gal’chenko et al. (1977) reported the ability of their isolate to accumulate PHB and grow at 37 °C, whereas Bowman et al. (1993) reported that *Methylocystis echinoides* IMET 10491T did not accumulate PHB or grow at 37 °C. Our TEM and growth studies using *Methylocystis echinoides* NCIMB 13100 agree with the results of Gal’chenko et al. (1977) (data not shown), suggesting that *Methylocystis echinoides* strains NCIMB 13100 and IMET 10491T in fact belong to different species.

The elongated dumbbell shape of strain CSC1T, its lack of motility and its ability to form polyphosphate separate it from *Methylosinus trichosporium* OB3bT. Other distinguishing characteristics between strain CSC1T and *Methylosinus trichosporium* OB3bT include smaller cell size, S-layer morphology and lack of heat resistance. Also, unlike reported observations of *Methylosinus trichosporium* OB3bT, strain CSC1T can use L-asparagine, L-aspartate and L-glutamine and cannot use L-lysine as a nitrogen source. The two strains share the ability to use L-ornithine and putrescine.

Greater similarity, however, is shared with the two *Methylocystis* strains, including the absence of motility, heat resistance and rossete formation. The cell shape of strain CSC1T, its ability to form polyphosphate and its cream-coloured colonies differ from *Methylocystis echinoides* IMET 10491T and *Methylocystis parvus* OBPP7 (Table 1). Unlike *Methylocystis echinoides* IMET 10491T, strain CSC1T is capable of using L-ornithine and putrescine as nitrogen sources, whereas, unlike *Methylocystis parvus* OBPP7, strain CSC1T is not capable of using L-lysine. In addition, as reported for *Methylocystis trichosporium* OB3bT, *Methylocystis echinoides* IMET 10491T and *Methylocystis parvus* OBPP7, cells of strain CSC1T are not lysed by 2% (w/v) SDS.

While strain CSC1T has previously been shown by TEM to contain characteristic type II membranes (Henry & Grbić-Galić, 1990; Hršak & Begonja, 1998), it was revealed here to accumulate both polyphosphate bodies (Fig. 2) and PHB storage granules, consistent with the properties of *Methylocystis parvus* OBPP7 (Bowman et al., 1993). No study has reported the structure of the cell envelope of strain CSC1T in comparison with that of other well-characterized methanotrophs. Of special interest are the S-layers, regular crystalline surface layers in archaea and bacteria, composed of protein or glycoprotein subunits (Sleytr et al., 1993; Siddhu & Olsen, 1997).

It is not known why S-layers develop in some bacteria and not in other closely related strains. However, hypotheses include suggestions that formation of these structures reflects adaptation to an ecological niche (Easterbrook & Alexander, 1983; Easterbrook, 1989) or a response to exposure to harsh environments (Minsky et al., 2002). Others suggest that S-layers may provide micro-organisms with a selective advantage by serving as a protective coating or as molecular porins or sieves and traps for substrates, in maintaining the rigidity of the cell envelope or in providing a means of cell adhesion and surface recognition (Sára & Sleytr, 1987; Sleytr & Messner, 1988; Sára et al., 1992; Siddhu & Olsen, 1997). Easterbrook & Sperker (1982) hypothesized that spinae may simultaneously fulfil many fortuitous roles, analogous to ‘arms’ with multipotential activities, including attachment, distance-keeping and protection. However, why some species are prone to spine formation and others are not, why S-layers exist in a variety of shapes and symmetries and why these structures develop among species of methanotrophs is not clearly understood.

The original report of Gal’chenko et al. (1977) referred to an isolate from lake mud in Russia, whereas the type strain *Methylocystis echinoides* IMET 10491T was isolated from sewage sludge (Meyer et al., 1986), both more nutrient-rich environments than the sediments of the uncontaminated groundwater aquifer in California where strain CSC1T was isolated. The epithet *echinoides* is a Neo-Latin adjective derived from the Greek word *echinos*, meaning hedgehog, named for the hedgehog-like appearance of this bacterium. However, as reported by Gal’chenko et al. (1977) and Haubold (1977) and verified in this study (Fig. 3c, d), the spines on these methanotrophs appear to be tubular and less dense in comparison with the spikes observed on strain CSC1T, which would be more aptly named for a hedgehog. Despite the different originating environments of *Methylocystis echinoides* IMET 10491T and strain CSC1T, proximity in the grouping of the genus *Methylocystis*, as strongly suggested by the results of this study, adds credence to the hypothesis that phylogeny and ecology may both play a
role in S-layer formation. Similar clustering of S-layer-producing strains of *Bacillus cereus* has been observed and, similar to these results, some strains in this cluster do not possess S-layers, while others do (Mignot et al., 2001). These authors concluded that ecological pressure is associated with the acquisition and maintenance of S-layers in hosts that fall into a phylogenetic cluster.

Phylogenetically, strain CSC1^T is most closely related to *Methylocystis* species. Its cell size, rosette formation and presence of surface layers are most similar to *Methylocystis echinoides* IMET 10491^T. However, DNA–DNA hybridization revealed only 3.8% relatedness between strain CSC1^T and *Methylocystis echinoides* NCIMB 13100 and 41.1% relatedness with *Methylocystis rosea* SV97^T. Strain CSC1^T and *Methylocystis echinoides* IMET 10491^T showed differences in surface-layer morphology, cell shape, colony colour, formation of polysaccharide and ability to use L-ornithine or putrescine as a nitrogen source. Characteristics of cell shape and the presence of surface layers, genes encoding sMMO and the ability to use L-lysine as a nitrogen source are divergent from *Methylosinus parvus* OB3b^T used in this work. We gratefully acknowledge Dr Andrew Ogram of the Soil and Water Science Department at UF for his generosity of time, lab space and resources during the initial phases of this work. We particularly wish to lovingly acknowledge the life and career of gentleman-scholar Dr Henry Aldrich (deceased 9 August 2005), our mentor and role model.

Description of Methylocystis hirsuta sp. nov.

Methylocystis hirsuta (hir.su’ta. L. fem. adj. hirsuta hairy, rough, shaggy, bristly).

Cells are aerobic, Gram-negative, 0.3–0.6 × 0.7–1 μm in size and occur singly or in clusters. Reproduces by normal cell division; budding division does not occur. Cells are not motile but possess a spiny surface layer composed of polysaccharide. Produces oxidase and catalase. Forms lipid polysaccharide. Produces oxidase and catalase. Forms lipid

The type strain, strain CSC1^T (=ATCC BAA-1344^T = DSM 18500^T), was isolated from an uncontaminated groundwater aquifer in the mid-1980s from Moffett Naval Air Station in Mountain View, CA, USA.

Acknowledgements

The authors wish to thank Dr Dubravka Hrsˇak for donation of strain CSC1^T and Dr Jeremy Semrau for donation of *Methylosinus trichosporium* OB3b^T used in this work. We gratefully acknowledge Dr Andrew Ogram of the Soil and Water Science Department at UF for his generosity of time, lab space and resources during the initial phases of this work. We particularly wish to lovingly acknowledge the life and career of gentleman-scholar Dr Henry Aldrich (deceased 9 August 2005), our mentor and role model.

References

Methylcystis hirsuta sp. nov.

