Labrys okinawensis sp. nov. and **Labrys miyagiensis** sp. nov., budding bacteria isolated from rhizosphere habitats in Japan, and emended descriptions of the genus **Labrys** and **Labrys monachus**

Muhammad Saiful Islam, Hiroko Kawasaki, Yasuyoshi Nakagawa, Tsutomu Hattori and Tatsuji Seki

Three strains, MAFF 210191T, G24103T and G24116, assumed to be members of two novel species, were isolated from several rhizosphere habitats in different parts of Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates formed a distinct monophyletic group together with the two known species of the genus **Labrys**, suggesting that the isolates have a close affiliation with this genus. In this study, a polyphasic approach was used to characterize and compare the three isolates with the two species of the genus **Labrys**, **Labrys monachus** and **Labrys methylaminiphilus**. All three isolates were aerobic, Gram-negative, motile and non-sporulating and they ranged in shape from spherical to short rods. The cells multiplied by budding and utilized a wide variety of monosaccharides, disaccharides and sugar alcohols as sole carbon and energy sources, but they did not utilize C1 compounds, salicin or D-melezitose. The strains were inhibited by DL-α-alanine and glycine (both at 10 mM). The major cellular fatty acids were C19:0 cyclo, C16:0, C18:1 ω7c and C18:1 ω9c. The three isolates shared < 12% and < 11% DNA–DNA relatedness with **L. monachus** DSM 5896T and **L. methylaminiphilus** DSM 16812T, respectively. The G+C content of the isolates (61–62 mol%) was also significantly lower than those of the two previously characterized species. In spite of many morphological, physiological and chemotaxonomic similarities among the three isolates, strain MAFF 210191T could be differentiated from strains G24103T and G24116 on the basis of 16S rRNA gene sequence divergence, DNA–DNA relatedness (< 46%) and gelatin hydrolysis. Two novel species are therefore proposed, namely **Labrys okinawensis** sp. nov., with the type strain MAFF 210191T (= DSM 18385T), and **Labrys miyagiensis** sp. nov., with the type strain G24103T (= NBRC 101365T = NCIMB 14143) and also including strain G24116 (= NBRC 101366 = NCIMB 14144). Emended descriptions of the genus **Labrys** and **Labrys monachus** are also presented.

Rhizosphere and rhizoplane bacteria, which generally represent a subset of soil micro-organisms, have various important beneficial, neutral and harmful effects on the growth and development of numerous plants (Lynch, 1990). Taxonomic studies of these micro-organisms are significant from both agricultural and ecological points of view. Assessment of the structures of rhizosphere microbial populations has long been a focus of scientific interest and numerous root-associated bacteria of both diazotrophic
and non-diazotrophic populations have been described to date; however, much remains unknown regarding their biodiversity in this important habitat. This lack of information is in part because fast-growing bacteria often outgrow the slow growers and also because many bacteria are inhibited by the high concentration of ingredients in the ordinary laboratory media used for isolation and detection (Janssen et al., 2002).

Strain MAFF 210191T, supplied by the Ministry of Agriculture, Food and Forestry of Japan, was isolated from the root-nodule of Entada phaseoloides, a legume found in Okinawa, Japan. In addition, in the course of investigating the bacterial population inhibited by nutrient broth but capable of growing in 100-fold-diluted nutrient broth, strains G24103T and G24116 were isolated from a grassland soil at Sendai in Miyagi, Japan (El-Beltagy & Hattori, 1994). Preliminary investigations based on partial 16S rRNA gene sequences showed that these three strains were similar to members of the genus Labrys (Vasil’eva & Semenov, 1984).

The genus Labrys was first described by Vasil’eva & Semenov (1984) based on Labrys monachus VKM B-1479T (= DSM 5896T), which was isolated from silt of Lake Mustijärvi in Estonia. Although the genus was placed in the Alpha-proteobacteria on the basis of the 16S rRNA gene sequence, its phylogenetic position at the family level remained obscure because of the unavailability of strains (Fritz et al., 2004). The genus remained monospecific until recently, when Miller et al. (2005) reported the isolation of another strain, JLW10T (= DSM 16812T) from sediment of Lake Washington, Seattle, WA, USA, and proposed a second species, Labrys methylaminiphilus. In the present study, the taxonomy of strains MAFF 210191T, G24103T and G24116 was studied and two novel species are proposed. Emended descriptions of the genus Labrys and L. monachus are also proposed.

The three isolates were cultured in modified yeast extract-mannitol broth (YMB) containing (l−1, pH 7.0, 28 °C) 0.5 g yeast extract, 10 g mannitol, 0.5 g K2HPO4, 0.2 g NaCl, 0.2 g CaCl2·2H2O and 0.1 g MgSO4·7H2O. For long-term maintenance, cells grown in slant cultures were suspended thoroughly in 12–15% glycerol, transferred to sterilized serum tubes and stored at −85 °C. L. monachus DSM 5896T and L. methylaminiphilus DSM 16812T, obtained from the DSMZ, were used as reference strains.

Phase-contrast microscopy revealed that all three isolates were Gram-negative, non-sporulating, spherical to short rods and motile. They all occurred singly or in pairs and multiplied by budding. Cells grown at 28 °C formed visible colonies on yeast extract-mannitol agar (YMA, pH 7.0; recipe as for YMB plus 15 g agar l−1) plates within 3–4 days. Colonies were 1–2 mm in diameter, circular, white to greyish, convex, opaque and viscous in consistency.

Genomic DNA was isolated as described by Ausubel et al. (1995). To obtain high-molecular-mass preparations for hybridization experiments, genomic DNA was further purified by equilibrium ultracentrifugation in CsCl/ethidium bromide gradients according to the method of Hamamoto & Nakase (1995), using an ultracentrifuge (Hitachi CS-210) at 400 000 g for 16 h. The quality of DNA was verified by spectrophotometric determination of A260/ A280, which was at least 1.8.

The 16S rRNA gene fragment was amplified as described by Normand et al. (1996) using Ex Taq polymerase (TaKaRa Shuzo) in a Gene Amp PCR system 9700 (PE Applied Biosystems). PCR products were purified using a QIAGEN PCR purification kit. DNA sequences were determined in the present study was used in the phylogenetic analysis. The 16S rRNA gene sequences, along with those of the three isolates, were aligned and ambiguous sites were eliminated manually prior to the construction of a phylogenetic tree by the neighbour-joining method with CLUSTAL X (Thompson et al., 1997; Jeanmougin et al., 1998). The robustness of individual branches was estimated by bootstrap analysis with 1000 replicates. In the phylogenetic tree, the three isolates, L. monachus DSM 5896T and L. methylaminiphilus DSM 16812T formed a monophyletic group with a maximum bootstrap value, which confirms that the isolates are members of the genus Labrys (Fig. 1). Strains G24103T and G24116 had identical 16S rRNA gene sequences, which showed 98.8, 98.4 and 98.5% similarity to those of strain MAFF 210191T, L. monachus DSM 5896T and L. methylaminiphilus DSM 16812T, respectively. On the other hand, the 16S rRNA gene sequence of MAFF 210191T respectively showed 97.5 and 98.4% similarity to those of L. monachus DSM 5896T and L. methylaminiphilus DSM 16812T.

The ability of the isolates to utilize various carbon compounds as sole carbon and energy sources was tested in YMB basal medium (YMB with 1/10 yeast extract and without mannitol). Stock solution of each substrate was added to the basal medium at a final concentration of 0.2% (w/v). The mixture was adjusted to pH 7.0, filter-sterilized (0.45 μm; Millipore), inoculated with washed cells, incubated at 28 °C and observed for growth for 2 weeks. Growth was confirmed by both observation with the naked eye and spectrophotometry (OD600). The ability to utilize nitrogen sources was investigated in a similar manner in
At a final concentration of 0.1 % (w/v) for each tested antibiotic, the ability to utilize C1 compounds was tested on mono-, di- or trimethylamine-supplemented minimal medium (Harder et al., 1973; Miller et al., 2005). Data regarding carbon and nitrogen source utilization are summarized partly in Table 1 and partly in Supplementary Table S1 (available in IJSEM Online). Sensitivity to antibiotics was determined by streaking the cells in triplicate on YMA plates containing the following antibiotics: erythromycin (10 μg ml⁻¹), ampicillin (50 μg ml⁻¹), penicillin (100 μg ml⁻¹), kanamycin (10 μg ml⁻¹), chloramphenicol (50 μg ml⁻¹) and tetracycline (10 μg ml⁻¹). Growth was assessed after 2 weeks of incubation. With the exception of erythromycin, the three isolates and L. monachus DSM 5896T were sensitive to all of the tested antibiotics. The three isolates could be differentiated from L. monachus DSM 5896T by the assimilation of sucrose, D-cellulbiose and dulcitol as sole carbon and energy sources and utilization of L-methionine, L-proline, L-serine, L-tyrosine and L-phenylalanine as sole nitrogen sources. The three isolates could be distinguished from L. methylaminophilus DSM 16812T by the following characteristics: they were not able to utilize C1 compounds, they could not assimilate DL-α-alanine or glycine as sole nitrogen source, they were unable to grow on Luria–Bertani agar (LB), tryptic soy agar (Difco) or tryptone-glucose-yeast extract agar [TGY, pH 7.0, containing (1 l⁻¹): 5 g tryptone, 1 g glucose, 2.5 g yeast extract and 15 g agar], they were inhibited by 10 mM DL-α-alanine and glycine and they were sensitive to ampicillin, penicillin, kanamycin, chloramphenicol and tetracycline.

For the N₂ fixation experiment, jellified Winogradsky’s N₂-free medium (Hashidoko et al., 2002; Tchan & New, 1984) was designed. A mineral mixture was prepared containing (g l⁻¹): KH₂PO₄, 50; MgSO₄·7H₂O, 25; NaCl, 25; FeSO₄·7H₂O, 1; Na₂MoO₄·2H₂O, 1; and MnSO₄·4H₂O, 1. The mixture was adjusted to pH 7.2 with solid NaOH and added to (5 ml l⁻¹) a solution of sugar (10 g mannitol l⁻¹) and powdery CaCO₃ (0.1 g l⁻¹), adjusted to pH 7.0 with 2 M H₂SO₄ and filtered (0.45 μm; Millipore). The resulting filtrate was mixed with gellan gum (0.3 %, w/v), dissolved by heating, dispensed into tubes, sterilized and cooled appropriately to make soft gels. Cells were washed, suspended in sterile water, inoculated into the tubes and vortexed before incubation at 28 °C. Results were recorded after 2 weeks of incubation. To search for nifH (encoding the iron protein of nitrogenase) and nodA (encoding the N-acyl transferase, a key nod factor in nodulation) genes, Southern hybridization was performed as described by Sambrook et al. (1989). Although the strains showed clear growth in Winogradsky’s N₂-free mineral medium, attempts to amplify or hybridize with the nifH and nodA genes failed with the specific primers and probes used (Zehr & McReynolds, 1989). These findings are consistent with results obtained with L. monachus DSM 5896T and L. methylaminophilus DSM 16812T, which were isolated from lake sediment; both were reported to be unable to fix nitrogen. In contrast, strain MAFF 210191T was isolated from a root nodule of the legume Entada phaseoloides and strains G24103T and G24116 were isolated from a grassland soil, which is suggestive of symbiotic or associative nitrogen-fixing capability. Therefore, our failure to detect the nif or nod genes might be explained by the presence of distantly related N₂-fixing gene machineries that are consistent with results obtained with L. monachus DSM 5896T and L. methylaminophilus DSM 16812T (Fritz et al., 2004; Miller et al., 2005). In contrast to L. monachus DSM 5896T, the amount of C₁₈:₀-3-OH was larger than that of C₁₆:₀-3-OH in the three isolates. On the other hand, neither of the above hydroxy acids was found in L. methylaminophilus DSM 16812T and only a trace amount of C₁₇:₀-3-OH (0.40 %) was detected. However, the clear dominance of C₁₉:₀ cycloocta-8-10 fatty acid (> 53 %) in all of the strains reported so far is unique, and is potentially a marker for the genus Labrys.

Yeast extract-free basal liquid medium (as described above) was used. Analyses were based on 16S rRNA gene sequences indicating the position of strains MAFF 210191T, G24103T and G24116 with relevant soil- and plant-associated bacteria. Bar, 5 substitutions per 100 nucleotide positions.
remained undetected because of non-optimal reaction conditions or due to the presence of a novel system yet to be identified.

The G+C contents were determined by HPLC (Hitachi LaChrom L-7100) separation as described by Tamaoka & Komagata (1984). The G+C contents were 62.3, 61.4 and 61.0 mol% for MAFF 210191T, G24103T and G24116, respectively. The G+C content of the reference strain \textit{L. monachus} DSM 5896T was 65.0 mol%, which is lower than that previously reported (67.9 mol%) by Vasil’eva & Semenov (1984), who used the DNA melting-point method for the determination of G+C content. The G+C contents of the three isolates (61–62 mol%) were noticeably lower than those of both \textit{L. monachus} DSM 5896T (65.0 mol%) and \textit{L. methylaminophilus} DSM 16812T (65.7 mol%).

DNA–DNA hybridization was carried out according to the photobiotin microplate method as described by Ezaki \textit{et al.} (1989) (see Supplementary Table S3). Hybridizations were performed on immunoplates (Nunc) at 51°C in a 2 × SSC buffer containing 50% (v/v) formamide. The three isolates possessed low DNA–DNA relatedness to both \textit{L. monachus} DSM 5896T (<12%) and \textit{L. methylaminophilus} DSM 16812T (<11%). The DNA–DNA relatedness between G24103T and G24116 was >91%, whereas their relatedness to MAFF 210191T was <39% and <46%, respectively, thus justifying the placement of strains G24103T and G24116 into one species and strain MAFF 210191T into a separate species (Wayne \textit{et al.}, 1987). This classification is also supported by findings that the 16S rRNA gene sequences of G24103T and G24116 are identical and 98.8% similar to that of MAFF 210191T. Moreover, isolate MAFF 21091T has a slightly higher G+C content (62.3 mol%) than G24103T (61.4 mol%) and G24116 (61.0 mol%). In addition, isolate MAFF 210191T is able to liquefy gelatin and can use L-glutamine and L-aspartic acid as sole nitrogen sources; all of these properties differentiate it physiologically from the other two isolates.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Characteristic} & \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} \\
\hline
\textbf{Source of isolation} & Root module & Soil & Lake sediment* & Lake sediment \\
\textbf{Cell shape} & Spherical to short rods & Spherical to short rods & Flat, triangular with radial symmetry & Rods \\
\textbf{Motility} & Motile & Motile & Non-motile & Non-motile \\
\textbf{Growth pH: Range} & 4.0–9.0 & 4.0–9.0 & 4.0–9.0 & 4.0–9.5† \\
\hline
\textbf{Optimum} & 6.0–7.5 & 6.0–7.5 & 6.0–7.5 & 5.0–7.0 \\
\hline
\textbf{Temperature range for growth (°C)} & 15–32 & 15–32 & 20–50b & 10–35 \\
\hline
\textbf{Utilization as sole carbon and energy source:} & & & & \\
\textbf{Sucrose} & ++ & + & – & + \\
\textbf{D-Celllobiose} & ++ & + & – & NR \\
\textbf{Dulcitol} & ++ & + & – & NR \\
\hline
\textbf{Utilization of C$_3$ compounds:} & & & & \\
\textbf{Methylamine} & – & – & Wa & + \\
\textbf{Dimethylamine} & – & – & NR & + \\
\textbf{Trimethylamine} & – & – & – & + \\
\hline
\textbf{Utilization as sole nitrogen source:} & & & & \\
\textbf{DL-\textalpha-Alanine} & – & – & – & + \\
\textbf{Glycine} & – & – & – & + \\
\textbf{L-Glutamic acid} & – & – & – & + \\
\textbf{L-Tryptophan} & ++ & + & + & – \\
\textbf{L-Arginine} & + & + & v & – \\
\textbf{Catalase} & W & W & + & + \\
\textbf{Hydrolysis of gelatin} & + & + & v & + \\
\textbf{G+C content (mol%)} & 62.3 & 61.0–61.4 & 65.0 & 65.7 \\
\hline
\end{tabular}
\caption{Differential characteristics of strains MAFF 210191T, G24103T and G24116 and the two representatives of the genus \textit{Labrys}.}
\end{table}
Therefore, two novel species are proposed with the names *Labrys okinawensis* sp. nov. for isolate MAFF 210191^T^ and *Labrys miyagiensis* sp. nov. for isolates G24103^T^ and G24116; these names reflect the respective sites of their first isolation.

The genus *Labrys* was established on the basis of a single isolate (Vasil’eva & Semenov, 1984). A second species of this genus, also based on a single isolate, has been proposed recently (Miller et al., 2005). Here, two further species are proposed on the basis of the study of three isolates. The description of the genus, which was formulated according to the characters of the first isolate, is no longer sufficient to encompass the reported variations in cell shape, motility, G + C content, methylotrophy etc. among its members. Moreover, in the current description of the genus, there is no information regarding its cellular fatty acid profile, which is an important taxonomic marker for the genus *Labrys*. Hence, some emendations of the description of the genus *Labrys* are required; emendations compiling the findings of all five isolates reported so far are proposed.

Similarly, the present description of *L. monachus*, used as a reference species in this study, can be emended, as well as enriched, with the addition of certain significant species-level characteristics such as G + C content, growth inhibition by certain amino acids, cellular fatty acid profile and other features revealed in the course of the present investigations. Therefore, an emended description of *L. monachus* is also proposed.

Emended description of the genus *Labrys*

Characteristics of the genus are as described by Vasil’eva & Semenov (1984), except that cells can be rod-shaped and may or may not possess triangular radial symmetry, may have short prosthecae, can be motile or non-motile and may be facultative methylotrophs; furthermore, the G + C content of the DNA varies from 61.0 to 66.0 mol% and the predominant cellular fatty acids are C19:0 cyc108c, C16:0, C18:0 and C18:1ω7c. The major ubiquinone is Q-10. The genus belongs to the *Alphaproteobacteria*.

Emended description of *Labrys monachus*

The characteristics of the species are as described by Vasil’eva & Semenov (1984). In addition, the species does not grow on NA, LB, TSB or TGY media. Glycine and DL-α-alanine (10 mM) inhibit growth. Citrate is not utilized, vitamins are not required, starch is not hydrolysed, gelatin is not liquefied and 3-ketolactose is not produced from lactose oxidation. Oxidase- and catalase-positive. Tolerates erythromycin (10 mg ml$^{-1}$), but is sensitive to ampicillin (50 mg ml$^{-1}$), penicillin G (100 μg ml$^{-1}$), kanamycin (10 μg ml$^{-1}$), chloramphenicol (50 μg ml$^{-1}$) and tetracycline (10 μg ml$^{-1}$). The major cellular fatty acids are C19:0 cyc108c, C16:0, C18:1ω7c and C18:1ω9c. The major ubiquinone is ubiquinone Q-10. The type strain is DSM 5896^T^ (=VKM B-1479^T^). The DNA G+C content of the type strain is 65.0 mol% (HPLC).

Description of *Labrys okinawensis* sp. nov.

Labrys okinawensis (o.ki.na.wen’sis. N.L. masc. adj. okinawensis referring to Okinawa, the province in Japan where the bacterium was first isolated).

Grows slowly and forms white to greyish, semi-translucent, round, raised, convex and smooth colonies on YMA within 2–3 days. Cells are aerobic, Gram-negative, non-sporulating, spherical to short rods. Cells multiply by budding and produce large amounts of extracellular mucilage. Does not grow on nutrient agar (NA), LB, tryptone soya broth (TSB; Oxoid) or TGY media. Uses D-glucose, sucrose, fructose, D-maltose, D-galactose, D-trehalose, L-rhamnose, D-sorbitol, D-xylene, dulcitol, D-arabinose, adonitol, xylitol, meso-erythritol, inositol, D-cellobiose and D-mannitol but not D-melezitose or salicin as sole carbon and energy sources. Uses L-threonine, L-methionine, L-proline, L-serine, L-histidine, L-lysine, L-valine and L-tryptophan but not DL-α-alanine, glycine, L-isoleucine, L-glutamic acid, L-cysteine, L-leucine or L-asparagine as sole nitrogen sources. Glycine and DL-α-alanine (10 mM) inhibit growth. Growth is observed at 15–32°C, but not at 5 or 37°C. Growth at pH 4.0–9.0. Growth is seen in YMB medium containing up to 0.3% NaCl. Liquefies gelatin. Does not utilize citrate, require vitamins, hydrolyse starch or produce 3-ketolactose from lactose oxidation. Oxidase- and catalase-positive. Tolerates erythromycin (10 μg ml$^{-1}$), but is sensitive to ampicillin (50 μg ml$^{-1}$), penicillin G (100 μg ml$^{-1}$), kanamycin (10 μg ml$^{-1}$), chloramphenicol (50 μg ml$^{-1}$) and tetracycline (10 μg ml$^{-1}$). The major cellular fatty acids are C19:0 cyc108c, C16:0, C18:1ω7c and C18:1ω9c. The major ubiquinone is ubiquinone Q-10.

The type strain is MAFF 210191^T^ (= DSM 18385^T^), which was isolated from a root nodule of *Entada phaseoloides* on Okinawa, Japan. The DNA G+C content of this strain is 62.3 mol%.

Description of *Labrys miyagiensis* sp. nov.

Labrys miyagiensis (mi.ya.gi.en’sis. N.L. masc. adj. miyagiensis referring to Miyagi, the prefecture in Japan where the bacterium was first isolated).

Grows slowly and forms white to greyish, semi-translucent, round, raised, convex and smooth colonies on YMA within 2–3 days. Cells are aerobic, Gram-negative, non-sporulating and spherical to short rods. Cells multiply by budding and produce large amounts of extracellular mucilage. Does not grow on NA, LB, TSB or TGY medium. Uses D-glucose, sucrose, fructose, D-maltose, D-galactose, D-trehalose, L-rhamnose, D-sorbitol, D-xylene, dulcitol, D-arabinose, adonitol, xylitol, meso-erythritol, inositol, D-cellobiose and D-mannitol but not D-melezitose or salicin as sole carbon and energy sources. Uses L-threonine, L-methionine, L-proline, L-serine, L-histidine, L-lysine, L-valine and L-tryptophan but not DL-α-alanine, glycine, L-isoleucine, L-glutamic acid, L-cysteine, L-asparagine or L-cysteine as sole nitrogen sources. Glycine and DL-α-alanine (10 mM)
inhibit growth. Growth is observed at 15–32 °C, but not at 5 or 37 °C. Grows at pH 4.0–9.0. Growth is seen in YMB medium containing up to 0.3 % NaCl. Does not utilize citrate, require vitamins, hydrolyse starch, liquefy gelatin or produce 3-ketolactose from lactose oxidation. Oxidase- and catalase-positive. Tolerates erythromycin (10 μg ml⁻¹), but is sensitive to ampicillin (50 μg ml⁻¹), penicillin G (100 μg ml⁻¹), kanamycin (10 μg ml⁻¹), chloramphenicol (50 μg ml⁻¹) and tetracycline (10 μg ml⁻¹). The major cellular fatty acids are C₁₉:₀ cyclooctadecyl, C₁₆:₀, C₁₈:₁ω₇c and C₁₈:₁ω₆c. The major quinone is ubiquinone Q-10.

The type strain is G24103T (= NBRC 101365T = NCIMB 14143T), which was isolated from a grassland soil in Sendai in Miyagi, Japan. Strain G24116 (= NBRC 101366 = NCIMB 14144) is a reference strain. The DNA G+C contents of strains G24103T and G24116 are 61.4 and 61.0 mol%, respectively.

Acknowledgements

We would like to thank the Ministry of Agriculture, Food and Forestry, Japan for providing strain MAFF 210191T. This study was supported by a Grant-in-Aid from the Institute for Fermentation, Osaka (IFO) to H. K. This paper presents a portion of the dissertation submitted by M. S. I. to Osaka University in partial fulfilment of the requirements for a PhD degree.

References

