Thermoanaerobacter pseudethanolicus sp. nov.,
a thermophilic heterotrophic anaerobe from
Yellowstone National Park

Rob U. Onyenwoke,¹ Vadim V. Kevbrin,² Anatolly. M. Lysenko²
and Juergen Wiegel¹

¹Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA
²Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-Letiya
Oktyabrya 7/2, 117 312 Moscow, Russia

Strain 39Eᵀ, originally characterized as Clostridium thermohydrosulfuricum strain 39E and later
renamed as Thermoanaerobacter ethanolicus strain 39E, shows less than 97 % 16S rRNA gene
sequence similarity with the type strain of the type species of the genus Thermoanaerobacter,
T. ethanolicus strain JW 200ᵀ. On the basis of a polyphasic analysis that included DNA–DNA
hybridization studies with the subspecies of Thermoanaerobacter brockii, its closest phylogenetic
relatives, strain 39Eᵀ represents a novel species of the genus Thermoanaerobacter, for which the
name Thermoanaerobacter pseudethanolicus sp. nov. is proposed. The type strain is 39Eᵀ
(=DSM 2355ᵀ=ATCC 33223ᵀ).

As first reported by Bateson et al. (1989) and Rainey et al. (1993), the 16S rRNA gene sequence data clearly places
strain 39Eᵀ closer phylogenetically (>98 % similarity) to the subspecies of Thermoanaerobacter brockii (Zeikus et al., 1979), i.e. T. brockii subsp. brockii DSM 1457ᵀ (Zeikus et al., 1979; Lee et al., 1993; Cayol et al., 1995), T. brockii subsp. finnii DSM 3389ᵀ (Schmid et al., 1986; Cayol et al., 1995)
and T. brockii subsp. lactiethylicus DSM 9801ᵀ (Cayol et al., 1995), than to T. ethanolicus strain JW 200ᵀ, the type strain
of the type species of the genus Thermoanaerobacter (Wiegel & Ljungdahl, 1981; Fig. 1). To clarify the
relationship between strain 39Eᵀ and the subspecies of T. brockii, DNA–DNA hybridization experiments were carried out.

DNA–DNA hybridization experiments were performed spectrophotometrically as described by De Ley et al. (1970)
and modified by Huß et al. (1983). Chromosomal DNA for DNA–DNA hybridizations was isolated according to
Marmur (1961). The results of DNA–DNA hybridizations between strain 39Eᵀ and T. brockii subsp. brockii DSM
1457ᵀ, T. brockii subsp. finnii DSM 3389ᵀ and T. brockii subsp. lactiethylicus DSM 9801ᵀ gave reassociation values
of 56, 51 and 45 %, respectively (see Supplementary Table S1 available in IJSEM Online). The fact that all of the values
were less than 70 % indicates that strain 39Eᵀ is not related to any of the T. brockii subspecies at species level (Wayne et al., 1987). This result was corroborated by the Deutsche Sammlung von Mikroorganismen und Zellkulturen,
Braunschweig, Germany (P. Schumann, personal communication), where a DNA–DNA reassociation value of
23–34 % was obtained (using the spectrophotometric method of De Ley et al., 1970) between strain 39Eᵀ and
T. brockii subsp. brockii DSM 1457ᵀ. Our DNA–DNA hybridizations between the known subspecies of T. brockii
(T. brockii subsp. brockii DSM 1457ᵀ to T. brockii subsp. finnii DSM 3389ᵀ and T. brockii subsp. lactiethylicus DSM
9801ᵀ) gave values of 65 and 67 %, as compared with reported values of 89–97 % and 76–85 %, respectively. Our value for DNA–DNA hybridization between T. brockii subsp. finnii DSM 3389ᵀ and T. brockii subsp. lactiethylicus DSM 9801ᵀ was 62 %, while the reported value is 76–85 %.
All of the values obtained in this study were significantly lower than the results obtained by Cayol et al. (1995) (see
Supplementary Table S1). However, these aberrations might be due to the fact that Cayol et al. (1995) employed the
tritium-labelled nucleotide method for determining DNA–DNA relatedness, whereas the results obtained in
this work relied upon the spectrophotometric protocol of De Ley et al. (1970). Since our DNA–DNA hybridization results between the various T. brockii subspecies are not substantially below 70 % (see Supplementary Table S1), no changes in the status of the subspecies T. brockii subsp.
brockii DSM 1457T,

T. brockii subsp. finnii DSM 3389T and

T. brockii subsp. lactiethylicus DSM 9801T (Cayol et al., 1995) are proposed, although the data raise some doubts as to the validity of these subspecies, especially T. brockii subsp. lactiethylicus (Fig. 1). However, on the basis of the fact that the DNA–DNA hybridization values obtained for strain 39ET and the T. brockii subspecies are significantly below 70\% , strain 39ET does not represent a novel subspecies of T. brockii but instead represents a novel species of the genus Thermoanaerobacter, for which the name Thermoanaerobacter pseudethanolicus sp. nov. is proposed.

The classification of strain 39ET as a novel species is mainly based on previously published physiological properties (Table 1), 16S rRNA gene sequence analysis (Fig. 1) and DNA–DNA hybridization results. The name was chosen because strain 39ET (the proposed type strain of T. pseudethanolicus sp. nov.) produces fermentation products in proportions similar to those of strain JW 200T (the type strain of T. ethanolicus), with high levels of ethanol being formed per mole of glucose utilized.

Description of Thermoanaerobacter pseudethanolicus sp. nov.

Thermoanaerobacter pseudethanolicus [pseud’e.tha.no’li. cus. Gr. adj. pseudes false; N.L. adj. ethanolicus a bacteria-specific epithet; N.L. masc. adj. pseudethanolicus a false (Thermoanaerobacter) ethanolicus].

Other names include Thermoanaerobacter ethanolicus strain 39E (Lee et al., 1993) and Clostridium thermohydrosulfuricium strain 39E (Zeikus et al., 1980).

The description is based mainly on those given by Zeikus et al. (1980) and Lee et al. (1993) for strain 39ET. Cells are rod-shaped and form round, terminal, mother-cell-distending (drumstick-shaped) spores during growth on xylose-containing medium. Gram-stain reaction is variable, but the cell wall is Gram-type positive (Wiegel, 1981). No polymyxin B–lipopolysaccharide interaction is found (Wiegel & Quandt, 1982). Cells are motile and reduce thiosulfate to H\textsubscript{2}S. Fermented carbohydrates include xylose, cellobiose, starch, glucose, maltose and sucrose. No growth is observed using CO\textsubscript{2}/H\textsubscript{2}. The temperature optimum is 65 °C. The doubling time at 65 °C is 75 min. The DNA G+C content of the type strain is 34.4±0.3 mol\% (T\textsubscript{m}).

The type strain, 39ET (DSM 2355T=ATCC 33223T), was isolated from the Octopus Spring algal–bacterial mat in Yellowstone National Park, WY, USA, using modified

Table 1. Differential phenotypic characteristics for some species of the genus Thermoanaerobacter

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporulation</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-†</td>
</tr>
<tr>
<td>Motility</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gram stain</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Optimum growth temperature (°C)</td>
<td>65–70</td>
<td>65</td>
<td>55–60</td>
<td>65</td>
<td>69</td>
</tr>
</tbody>
</table>

*Data from Cook et al. (1991).

†Contains the major sporulation genes (Onyenwoke et al., 2004).
Trypticase-yeast extract-glucose medium (containing 5% xylose instead of glucose) at 65 °C.

The genome sequence for strain 39E is presently available under the name T. ethanolicus 39E at http://genome.ornl.gov/microbial/teth_39e/.

References

