Haloterrigena saccharevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China

Xue-Wei Xu,1,2 Shuang-Jiang Liu,2 Dilbar Tohty,3 Aharon Oren,4 Min Wu1 and Pei-Jin Zhou2

1College of Life Sciences, Zhejiang University, Hangzhou 310027, P. R. China
2Institute of Microbiology, Chinese Academy of Sciences, ZhongGuanCun, Haidian, Beijing 100080, P. R. China
3Department of Biology, Xinjiang Normal University, Urumqi 830054, P. R. China
4Institute of Life Sciences and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

A novel extremely halophilic strain, isolated from Aibi salt lake, Xin-Jiang, China, was subjected to polyphasic taxonomic characterization. This strain, designated AB14T, is neutrophilic, motile and requires at least 10 % (w/v) NaCl for growth. Strain AB14T grows at 24–58 °C, with optimal growth at 42–45 °C. Mg2+ is not required, but growth is observed in MgCl2 concentrations as high as 1·0 M. Strain AB14T possesses the diphatanyl (C20C20) and phytanyl-sesterterpanyl diether (C22C25) derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and mannose-2,6 disulfate 1→2 glucose-glycerol diether. The genomic DNA G+C content is 66·6 mol%. The 16S rRNA gene sequence similarity values of strain AB14T with its nearest phylogenetic neighbours (Haloterrigena thermotolerans and Haloterrigena turkmenica) are 98·6 and 96·0 %, respectively. DNA–DNA hybridization revealed 54 % relatedness between strain AB14T and Haloterrigena thermotolerans JCM 11050T and 21 % between strain AB14T and Haloterrigena turkmenica JCM 9101T. It is therefore proposed that strain AB14T represents a novel species, for which the name Haloterrigena saccharevitans sp. nov. is proposed. The type strain is AB14T (= AS 1·3730T = JCM 12889T).

The genus Haloterrigena currently contains two species of extremely halophilic archaea, Haloterrigena turkmenica (Ventosa et al., 1999) and Haloterrigena thermotolerans (Montalvo-Rodrı´ guez et al., 2000). In phylogenetic trees based on 16S rRNA gene sequences, species of the genera Haloterrigena and Natrinema sometimes cluster together (Montalvo-Rodrı´ guez et al., 2000; Xin et al., 2000; Tindall, 2003). However, there are striking differences in the polar lipid composition among species of these two genera. The type species of Haloterrigena possesses mannose-2,6 disulfate 1→2 glucose-glycerol diether (S2-DGD), but lacks phosphatidylglycerol sulfate (Ventosa et al., 1999; Montalvo-Rodrı´ guez et al., 2000). The opposite is true for the type species of Natrinema (McGenity et al., 1998; Xin et al., 2000). Based on a combination of other morphological and chemotaxonomic characters, species of these two genera can thus be distinguished from each other.

Strain AB14T was isolated from a soil sample collected from the near-edge floor of Aibi salt lake located in Xin-Jiang, China. The isolate was grown and maintained aerobically at 37 °C in S-G medium (Sehgal & Gibbons, 1960). A pure culture was obtained by repeated restreaking. Phenotypic tests were performed according to the proposed minimal standards for the description of new taxa in the order Halobacterales (Oren et al., 1997). The optimal conditions for growth were determined in S-G medium with 0·85–5·10 M NaCl and 0–1·0 M Mg2+, respectively. The pH range for growth (assayed from pH 5·0 to 9·5 at intervals of 0·5) was determined by adding MES (pH 5·0–6·0), PIPES (pH 6·5–7·0), Tricine (pH 7·5–8·5) and CHES (pH 9·0–9·5) to S-G medium at a concentration of 50 mM. The temperature range for growth of strain AB14T in S-G medium (pH 7·5) with optimal NaCl and Mg2+ concentrations was determined using a TN3F temperature gradient incubator (ADVANTEC). Cell morphology and motility were examined by optical and transmission electron microscopic observations.
microscopy (H-600; Hitachi). Gram staining was performed using acetic acid-fixed samples, as described by Dussault (1955).

Anaerobic growth was tested in the presence of nitrate, L-arginine or DMSO (each at 5 g l⁻¹) in filled stoppered tubes. Gelidose synthesis was determined as described by Oren et al. (2002). The following characteristics were tested according to Xin et al. (2000) as described previously (Oren et al., 1997): hydrolysis of starch, casein, Tween 40 and Tween 80; nitrate reduction; production of indole and H₂S; catalase and oxidase activities; and utilization of sugars, alcohols, amino acids and organic acids. Haloburum sodomense JCM 8880ᵀ and Haloterrigena thermotolerans JCM 11050ᵀ were used as controls in tests.

Total lipids were extracted by the modified method of Kamekura & Kates (1988). Phospholipids and glycolipids were separated by TLC on silica gel plates (10 × 10 cm) and analysed according to Xin et al. (2000). Genomic DNA was prepared by the method of Marmur (1961) and the purity was checked spectrophotometrically. The DNA G+C content was determined by thermal denaturation (Tm) (Marmur & Doty, 1962) using Escherichia coli K-12 DNA as calibration standard. The 16S rRNA gene sequence was amplified under conditions described by Feng et al. (2005) with the following primers (position given according to E. coli 16S rRNA gene): primer 1, 5’-ATTCCGTTGAT-CCTGC-3’ (positions 6–22); and primer 2, 5’-AGGAGG-TGATCCAGCCGCAG-3’ (positions 1540–1521).

The sequence was compared with closely related sequences of reference organisms from the FASTA network service. Sequence data were aligned with CLUSTAL_W 1.8 (Thompson et al., 1994). Phylogenetic trees were constructed by the neighbour-joining method with the MEGA3 program package (Kumar et al., 2004). DNA–DNA hybridizations were performed by the thermal denaturation and renaturation method of De Ley et al. (1970), as modified by Huß et al. (1983), using a Beckman DU 800 spectrophotometer. The 16S rRNA gene sequence similarity values between strain AB14ᵀ and the type strains of Haloterrigena thermotolerans JCM 11050ᵀ and Haloterrigena turkmenica JCM 9101ᵀ were 98.6 and 96.0%, respectively. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that strain AB14ᵀ formed a coherent cluster with Haloterrigena thermotolerans with a bootstrap resampling value of 99% (Fig. 1). The polar lipid profile of strain AB14ᵀ, which possesses the C₂₀C₂₀ and C₂₀C₂₅ derivatives of phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and S₂-DGD, was consistent with that of Haloterrigena species. The contents of PG and S₂-DGD of strain AB14ᵀ, however, were different from those in Haloterrigena thermotolerans JCM 11050ᵀ (see the supplementary figure in IJSEM Online). S₂-DGD was present in strain AB14ᵀ in greatest abundance, whereas the amount of PG was lower than that in Haloterrigena thermotolerans JCM 11050ᵀ. Strain AB14ᵀ and Haloterrigena thermotolerans JCM 11050ᵀ were incubated at 37 °C for 6 days and the polar lipids were extracted under identical conditions. The DNA G+C content of strain AB14ᵀ (66.6 mol%) was notably higher than that of Haloterrigena thermotolerans (63.3 mol%) (Montalvo-Rodríguez et al., 2000) and Haloterrigena turkmenica (59.2–60.2 mol%) (Ventosa et al., 1999). The DNA–DNA relatedness levels of strain AB14ᵀ to Haloterrigena thermotolerans JCM 11050ᵀ and Haloterrigena turkmenica JCM 9101ᵀ were 54 ± 2% and 21 ± 2%, respectively (mean values of two determinations). Comparison of phenotypic properties (Table 1) also indicated differences between strain AB14ᵀ and Haloterrigena thermotolerans. The optimal growth temperature of strain AB14ᵀ is 42–45 °C, which is lower than that of Haloterrigena thermotolerans (50 °C). Strain AB14ᵀ could reduce nitrate under anaerobic conditions and some cells deposited under the tube, whereas Haloterrigena thermotolerans was strictly aerobic. In addition, strain AB14ᵀ could be distinguished from Haloterrigena thermotolerans by its hydrolysis of gelatin and its sensitivity to tetracycline (Table 1); results were observed after 14 days, with weakly hydrolysable or sensitive

Fig. 1. Neighbour-joining tree based on 16S rRNA gene sequence data showing the phylogenetic positions of strain AB14ᵀ. Haloterrigena species and some other related taxa. Bootstrap values (1000 replications) are shown as percentages at each node. Bar, 5 substitutions per 100 nt.
Table 1. Some characteristics that distinguish AB14^T from *Haloterrigena thermotolerans*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl range for growth (M)</td>
<td>>1-7</td>
<td>>2-0</td>
</tr>
<tr>
<td>Optimum growth temperature (°C)</td>
<td>42-45</td>
<td>50</td>
</tr>
<tr>
<td>Anaerobic growth with nitrate</td>
<td>w</td>
<td>–</td>
</tr>
<tr>
<td>Hydrolysis of gelatin</td>
<td>–</td>
<td>w</td>
</tr>
<tr>
<td>Sensitivity to tetracycline</td>
<td>w</td>
<td>–</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>66-6</td>
<td>63-3</td>
</tr>
</tbody>
</table>

The type strain, AB14^T (= AS 1.3730^T = JCM 12889^T), was isolated from Aibi salt lake, Xin-Jiang, China.

Acknowledgements

This work was partially supported by a grant from the National Natural Science Foundation of China (grant no. 30370029) and the Major State Basic Research Development Program of China (973 Program) (grant no. 2004cb719601). We thank Dr J.-C. Wei, Dr Z.-P. Liu, Mr B.-J. Wang and Ms J. Feng for their kind help and valuable comments. We are grateful to Mr Y.-G. Zhou (CGMCC) for providing the type strains of *Haloterrigena* species.

References

