Spiroplasma leucomae sp. nov., isolated in Poland from white satin moth (Leucoma salicis L.) larvae

Marietta A. Oduori,1 Jerzy J. Lipa2 and Gail E. Gasparich1

1Department of Biological Sciences, Towson University, Towson, MD 21252, USA
2Department of Biocontrol and Quarantine, Institute of Plant Protection, Poznan, Poland

Spiroplasma sp. strain SMAβ, isolated in Poland from white satin moth larvae, Leucoma salicis L. (Lepidoptera: Lymantriidae), was serologically distinct from other Spiroplasma species, groups or subgroups. Dark-field microscopy of the cells revealed the classical helical shape and subsequent transmission electron microscopy revealed cells surrounded by only a single cell membrane (lacking a cell wall). Growth of strain SMAβ occurred in M1D medium at 30 °C. Strain SMAβ catabolized both glucose and arginine, but did not hydrolyse urea. The G+C content of the DNA was 24 ± 1 mol% as determined by melting temperature analysis. Serological analysis revealed a very weak cross-reactivity (positive reaction only up to a 1 : 80 dilution) with two Spiroplasma strains, 277F (Spiroplasma sp. group I-4) and LB-12 (Spiroplasma sp. group I-5). Strain SMAβ (=ATCC BAA-521β =NBRC 100392β) is designated the type strain of a novel species, Spiroplasma leucomae sp. nov. (class Mollicutes: order Entomoplasmatales: family Spiroplasmataceae).

Published online ahead of print on 22 July 2005 as DOI 10.1099/ijs.0.63685-0.

Abbreviations: DF test, deformation test; MI test, metabolism inhibition test.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain SMAβ is DQ101278.

In this paper, we report the results of taxonomic studies of strain SMAβ that satisfy the requirements for species descriptions for the class Mollicutes (International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mollicutes, 1995). Results support the designation of strain SMAβ as the type strain of a novel species.

Isolation and cultivation

Techniques for isolating spiroplasmas from insect guts and haemocoel have been described previously (Hackett & Clark, 1989; Rose et al., 1993). Strain SMAβ was isolated and cultivated from the haemolymph of a larval satin moth (L. salicis) collected in Poland (Lipa et al., 1988). Primary isolation of strain SMAβ was performed in a culture of M1D medium (Whitcomb, 1983) and in a co-culture of M1D medium with insect tissue cells (1 : 1) (Konai et al., 1996b). For comparative purposes, strain SMAβ was adapted to serum fraction medium (SFM; Smith et al., 1954), to which 10 % glucose was added. Modifications were made to SFM by replacing Difco PPLO serum fraction with horse serum. Other media used for cultivation purposes included DCCM (Hackett et al., 1996), H-2 (Konai et al., 1996b) and a co-culture of M1D/H-2 (1 : 1) (Konai et al., 1996b). Isolates of strain SMAβ were grown at an optimal temperature of 30 °C (Konai et al., 1996a) both aerobically and anaerobically in a BBL anaerobic GasPak system (Becton Dickinson). Growth of strain SMAβ was determined by observing indicator changes in the medium (M1D) and by examining the cultures microscopically during a weekly observatory period. Initial inoculations of strain SMAβ into M1D and
M1D/TC media involved weekly passes due to the slow growth of the organism. Other media were used for comparative growth purposes: DCCM, H-2, SFM supplemented with 10% glucose and M1D/H-2. Slower growth rates were observed in all of these media. After a 1-month adaptation in M1D medium (containing 500 U penicillin ml\(^{-1}\)), strain SMA\(^T\) grew rapidly, requiring daily passes. Strain SMA\(^T\) was readily filterable through 450 nm and 220 nm pore-size filters. A 100 nm pore-size membrane filtrate was free of viable cells. Strain SMA\(^T\) was triply cloned in M1D medium (Whitcomb, 1983) by conventional filter-cloning procedures (Tully, 1983a) and designated strain SMA\(^T\). Representative strains of previously recognized groups and subgroups, including the type strains of previously recognized species (Williamson et al., 1998), were cultivated for comparative purposes. All spiroplasmas were grown statically in M1D medium at 30°C.

Morphological studies

Dark-field microscopy (magnification ×1000) of strain SMA\(^T\) observed during the exponential phase revealed helical cells with four or more turns. Strain SMA\(^T\) was highly motile and formed clumps after 3 days in the same culture.

For TEM, 20 ml exponential-phase culture of strain SMA\(^T\) was pelleted and fixed for 2 h in 3% glutaraldehyde, post-fixed in 1% osmium tetroxide for 3 h and then dehydrated in acetone and embedded in Spurr’s embedding medium (Williamson, 1983). Sections were stained with 2% aqueous uranyl acetate and Reynold’s lead citrate prior to visualization. As determined by TEM (Fig. 1), cells were filamentous, approximately 150 nm in diameter and surrounded by a single cytoplasmic membrane.

Serological tests

Strain SMA\(^T\) was tested serologically against hyperimmune antisera of each of the 40 different spiroplasmas that represent established type strains and subgroup reference strains (Williamson et al., 1998) using the deformation (DF) test (Williamson et al., 1978) and the metabolism inhibition (MI) test (Williamson & Whitcomb, 1983). Positive reactions for the DF test were confirmed by the presence of grape-like clusters on the spiroplasma, indicative of a reaction between the cell membrane and the antiserum. The presence of normal, helical/spiral-shaped spiroplasmas indicated no reaction to the antiserum (Williamson et al., 1978).

DF tests showed that strain SMA\(^T\) exhibited only weak serological reactivity with four representatives from group I: I-3 (Spiroplasma kunkelii E275\(^T\)) at 1:20, I-4 (Spiroplasma sp. strain 277F) at 1:80, I-5 (Spiroplasma sp. strain LB-12) at 1:80 and I-6 (Spiroplasma insolitum M55\(^T\)) at 1:20. All other reactions were negative. The homologous titre for S. citri R8A2\(^T\) was 2560 (Hackett et al., 1996). The homologous titre for strain SMA\(^T\) was 5120. The MI test results were determined by colour change, or lack thereof, and were performed twice. There were no positive reactions with any of the strains tested in the MI test.

The slight serological cross-reactions with group I spiroplasmas are interesting, as initial observations suggested that infection of satin moth larvae with strain SMA\(^T\) increased insect mortality (J. J. Lipa, unpublished data). Additional tests are planned to determine the degree (if any) of pathogenicity of strain SMA\(^T\) to several lymantriids including the gypsy moth (Lymantria dispar).

Biochemical analysis

Procedures for determining carbohydrate fermentation, arginine hydrolysis and urea utilization have been described previously (Aluotto et al., 1970). Strain SMA\(^T\) was adapted to a minimal medium, SFM supplemented with 1% bovine serum fraction (Tully, 1983b) and 10% glucose. After weaning, strain SMA\(^T\) was used to inoculate five tubes for biochemical testing as follows: tube 1 with SFM, tube 2 with SFM and 10% glucose, tube 3 with SFM and 10% glucose.
and 21% arginine, tube 4 with SFM and 21% arginine and tube 5 with SFM and 1% urea (Aluotto et al., 1970). Dark-field microscopy, as well as colour change, was used to identify growth of the cultures. A positive test showed growth in ten subsequent dilutions of the original tube and each positive test was repeated three times to ensure reproducibility. After adaptation to SFM supplemented with 10% glucose, strain SMAT was able to grow in media containing glucose, glucose and arginine, and arginine alone, indicating the abilities to ferment glucose and catabolize arginine. No growth was observed in SFM and urea, therefore urea hydrolysis was not observed.

Genome analysis

Strain SMAT was grown in a large culture (100 ml) and DNA was extracted as described previously (Gasparich et al., 1993). The DNA was diluted in 1 x SSC buffer for a final sodium concentration of 0.195 M. This sample was analysed (with a 1 x SSC buffer blank) in a Cary Varian thermal spectrophotometer equipped with software to determine the melting temperature and the G+C content was determined (Carle et al., 1983). This process was repeated several times and *Escherichia coli* DNA in 1 x SSC buffer was used as a control. The G+C base content of strain SMAT genomic DNA was measured as 21.56, 25.12 and 25.29 mol% (mean 24 ± 1 mol%).

Phylogenetic analysis

ATCC accession numbers and GenBank accession numbers for 16S rRNA gene sequences used in this study are indicated in Fig. 2(a). Sequences were aligned using CLUSTAL W (Thompson et al., 1994) and then aligned manually in MACCLADE (Maddison & Maddison, 1992). A 1000 replicate bootstrap analysis was performed using a heuristic search and the tree bisection reconnection parsimony algorithm from PAUP (Fig. 2a) and neighbour-joining analysis using the Jukes-Cantor model for substitutions (Fig. 2b) (version 4.0b; Swofford, 1998). In all analyses, strain SMAT consistently grouped with the group VIII subgroups.

This is the first taxonomic and diagnostic description of a spiroplasma isolated from a lepidopteran larva. The white satin moth (*L. salicis*) is recognized as an invasive alien species and a major pest that defoliates mainly poplar trees (*Populus* spp.) but is spreading damage to other trees like trembling aspen, black cottonwood and sometimes willow (Humphreys, 1996). Isolation and characterization of strain SMAT may contribute to attempts to establish biological control of satin moth larvae, which will be useful in efforts to curb deforestation.

As all the tests needed for the characterization of a novel spiroplasma species, as required by the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of *Mollicutes*, have been fulfilled, we propose a novel species *Spiroplasma leucomae* sp. nov.

Description of Spiroplasma leucomae sp. nov.

Spiroplasma leucomae [leu.co.ma'e. N.L. gen. fem. n. leucomae of Leucoma, systematic genus name of the white

Fig. 2. Phylogenetic trees showing the position of *S. leucomae* strain SMAT among representatives of the genera *Spiroplasma* and *Mycoplasma*. The 16S rRNA gene sequence of *S. leucomae* strain SMAT was included in a dataset described by Gasparich et al. (2004). *Mycoplasma pneumoniae* ATCC 15531T was used as an outgroup strain. (a) The tree shows a bootstrap parsimony analysis of the dataset, which was resampled 1000 times. Bootstrap percentage values are given at nodes. ATCC accession numbers are shown next to the organism names and GenBank accession numbers for the 16S rRNA gene sequences used are given in parentheses. (b) Tree constructed by neighbour-joining analysis with the Jukes-Cantor substitution model. Bar, 0.01 substitutions per site. Strain and sequence details are shown in (a) with the exception of strain N525 [not included in (a)].

![Phylogenetic trees](http://ijs.sgmjournals.org)
satin moth (Lepidoptera: Lymantriidae), the source of the type strain.

Cells are filamentous, helical and motile, and are approximately 150 nm in diameter. They pass freely through filters with 450 and 220 nm pores, but do not pass through filters with 100 nm pores. The cells lack true cell walls. Chemoorganotrophic. Acid is produced from glucose and arginine is catabolized. Does not utilize urea. Serologically distinct from previously established Spiroplasma species, groups and subgroups. The type strain was isolated from a fifth instar white satin moth (Leucoma salicis) larva. Pathogenicity for these moth larvae is not known. The G+C content of the DNA is 24 ± 1 mol% as determined by the melting temperature method.

The type strain is strain SMA\(^T\) (= ATCC BAA-521\(^T\) = NBRC 100392\(^T\)).

Acknowledgements

This work was supported in part by the NIH Bridges to the Baccalaureate Grant (# GM 58384-01A2) and from an NSF Research Experiences for Undergraduates Grant (# DBI0097478).

References

