Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia

Endalkachew Wolde-meskel,1 Zewdu Terefework,2 Åsa Frostegård1 and Kristina Lindström2

1Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, PO Box 5040, N-1432 Ås, Norway
2Department of Applied Chemistry and Microbiology, Biocenter 1, FIN-0014 University of Helsinki, Finland

The genetic diversity within 195 rhizobial strains isolated from root nodules of 18 agroforestry species (15 woody and three herbaceous legumes) growing in diverse ecoclimatic zones in southern Ethiopia was investigated by using PCR–RFLP of the ribosomal operon [16S rRNA gene, 23S rRNA gene and the internal transcribed spacer (ITS) region between the 16S rRNA and 23S rRNA genes] and 16S rRNA gene partial sequence (800 and 1350 bp) analyses. All of the isolates and the 28 reference strains could be differentiated by using these methods. The size of the ITS varied among test strains (500–1300 bp), and 58 strains contained double copies. UPGMA dendrograms generated from cluster analyses of the 16S and 23S rRNA gene PCR–RFLP data were in good agreement, and the combined distance matrices delineated 87 genotypes, indicating considerable genetic diversity among the isolates. Furthermore, partial sequence analysis of 67 representative strains revealed 46 16S rRNA gene sequence types, among which 12 were 100 % similar to those of previously described species and 34 were novel sequences with 94–99 % similarity to those of recognized species. The phylogenetic analyses suggested that strains indigenous to Ethiopia belonged to the genera \textit{Agrobacterium}, \textit{Bradyrhizobium}, \textit{Mesorhizobium}, \textit{Methylobacterium}, \textit{Rhizobium} and \textit{Sinorhizobium}. Many of the rhizobia isolated from previously uninvestigated indigenous woody legumes had novel 16S rRNA gene sequences and were phylogenetically diverse. This study clearly shows that the characterization of symbionts of unexplored legumes growing in previously unexplored biogeographical areas will reveal additional diversity.

INTRODUCTION

Rhizobia are soil bacteria that are capable of forming nitrogen-fixing symbiosis with leguminous plants. The family \textit{Leguminosae} comprises about 650 genera and 18 000 species, and includes short-lived annual herbs and woody perennials that are distributed over a wide range of ecological conditions (Doyle, 1994). Many of its members are of considerable agricultural and ecological importance, generally reflecting the beneficial symbiotic association with rhizobia. In sub-Saharan Africa, woody legumes are an integral part of traditional agroforestry systems and are considered to be low-cost alternatives to fertilizers for soil fertility improvement and land reclamation (Giller, 2001).

Currently, there are 44 recognized species of nodule-forming bacteria on legumes, within 12 genera, 10 of which belong to the class ‘\textit{Alphaproteobacteria}’ (\textit{Allorhizobium}, \textit{Azorhizobium}, \textit{Blastobacter}, \textit{Bradyrhizobium}, \textit{Devosia}, \textit{Ensifer}, \textit{Mesorhizobium}, \textit{Methylobacterium}, \textit{Rhizobium} and \textit{Sinorhizobium}), and two to the class ‘\textit{Betaproteobacteria}’ (\textit{Burkholderia} and \textit{Ralstonia}) (Sawada et al., 2003). In the last few years, many studies investigating rhizobia isolated from tree legumes in East Africa (notably Kenya and Sudan) have revealed considerable phenotypic and genetic diversity among strains, and several distinct groups have been identified and novel species described (Zhang et al., 1991;
Odee et al., 1997, 2002; Nick et al., 1999; McInroy et al., 1999). However, despite its designation as a centre of diversity and origin of some of the major legume crops, such as pea, lentils, clover and chickpea (Raven & Polhill, 1981), no information is available on rhizobia from Ethiopia, except for a recent article by Beyene et al. (2004), in which a unique natural rhizobial population that nodulates Phaseolus vulgaris was reported. Exploration of new biogeographical regions and the investigation of legumes that have not been checked for nodulation not only helps to uncover unknown rhizobia, but also supports research efforts aimed at selecting effective combinations of rhizobium–legume genotype to exploit the enormous potential of increased nitrogen fixation. In view of this, we previously surveyed the nodulation status of a variety of indigenous and exotic woody legumes in 14 ecologically diverse zones in southern Ethiopia, and isolated a large number of root-nodulating bacteria (Wolde-meskel et al., 2004a). The strains were phenotypically diverse and comprised several metabolically and genomically distinct groups that were not related to reference rhizobial species (Wolde-meskel et al., 2004a, b, c).

In this study, the strains were characterized by using PCR–RFLP of the 16S rRNA gene, the internal transcribed spacer (ITS) and the 23S rRNA gene, and partial 16S rRNA gene sequencing, and their genetic diversity and phylogenetic relationships were determined. To infer the phylogenetic relatedness of the unknown strains, the 16S rRNA gene sequences of currently recognized nitrogen-fixing root/stem nodule bacterial species were retrieved from the GenBank/EMBL database and included in the analysis.

METHODS

Bacterial strains. The 223 strains (195 novel isolates and 28 reference strains) used are listed in Tables 1 and 2 and Supplementary Tables S1 and S2 in IJSEM Online. The Ethiopian strains were isolated as described previously (Wolde-meskel et al., 2004a) from naturally occurring root nodules of 15 woody species (indigenous and introduced) and three herbaceous legumes, growing either in the field or under greenhouse conditions in soil samples from diverse agroecological zones in southern Ethiopia. The indigenous woody legumes included Acacia abyssinica, Acacia senegal, Acacia seyal, Acacia tortilis, Albizia gummifera, Erythrina brucei, Faidherbia albida, Millettia ferruginea and Sesbania sesban, whereas the introduced species were Acacia saligna, Cajanus cajan, Calliandra calothyrsus, Giricidia sepium, Leucaena diversifolia and Leucaena leucocephala. The herbaceous species were Phaseolus vulgaris, Vicia faba and Vigna unguiculata.

Growth of bacteria and DNA isolation. Bacteria were grown on yeast extract mannitol broth at 28 °C for 3–8 days depending on the strain (Somasegaran & Hoben, 1994). Total genomic DNA was isolated from 1-5 ml cultures according to Boom et al. (1990) with slight modifications (Terefe, 2001), where diatomaceous earth or Celite analytical filter aid (BDH) was used as a DNA-binding solid support. The concentrations were estimated by comparing the DNA samples with known concentrations of λ DNA using agarose gel electrophoresis.

PCR–RFLP of the ITS, and 16S and 23S rRNA genes. PCR of the 16S rRNA gene was carried out with primers F1D and R1D (Weisburg et al., 1991), as described by Zhang et al. (1999b), whereas the 23S rRNA gene was amplified with primers 3 (5'-CCGGTAGGGAAGGGTTGAAAATGCC-3') and 4 (5'-CCGGATGAGTGTTCACGC-3'), as described previously (Terefe, 1998). For amplification of the ITS, we used primers FGPL1490-72 and FGPL132', as described by Normand et al. (1992). DNA amplification was performed by using a PTC-200 Peltier thermal cycler (MJ Research); the cycling profile used was according to Zhang et al. (1999b). The size of the amplification products was verified by electrophoresis in 1% agarose gels. Aliquots of 8–12 μl of the amplified 16S and 23S rRNA genes were digested with 1–5 U of each of the restriction endonucleases AluI, HaeIII, MspI and MboI, at 37 °C overnight. The ITS region was restricted with the first three enzymes. The digested rRNA genes were separated in 3% agarose gels.

Partial 16S rRNA gene sequencing. Based on the PCR–RFLP results, 67 test strains were chosen for partial sequencing of the 16S rRNA gene, which was performed directly from PCR products (800 bp for 57 strains and 1350 bp for the other 10). The 16S rRNA genes were amplified as described by Zhang et al. (1999a), except that primers pA (5'-AGAGTTTGATCCTGAGGATC-3') and pF (5'-ACGGCAGCGCAAGCAGCATG-3') were used for the first 57 strains, and primers 1F (5'-GAGTGTATCTGGCCGTCAAG-3'), 15F (5'-ACGGGAGCGCCAGCATG-3') and 16F (5'-AATCTAAA-TGAATTTGACGCGG-3') with an automatic laser fluorescence DNA sequencer (Pharmacia). The quality of the sequences was verified by sequencing both strands. These sequences were added to the GenBank/EMBL/DDBJ database (Table 1).

Data analysis. Analysis of the restriction fragments and construction of dendrograms were performed as described by Terefe & et al. (1998). During separation of the fragments by agarose gel electrophoresis, the smaller fragments (100 bp or less) appeared diffuse and therefore were not used in the RFLP analysis. The CLUSTAL_X (version 1.83) program (Thompson et al., 1997) was used to align the sequences, and phylogenetic trees were constructed using the neighbour-joining method in MEGA program version 2.1 (Kumar et al., 2001). The trees were displayed using TreeView, as described by Zhang et al. (1999a). The 16S rRNA gene sequences of the type strains of the various genera used in this study were retrieved from the GenBank/EMBL database and used for cladistic analysis. The stability of the groupings was estimated by bootstrap analysis on 100 trees in the same package.

RESULTS AND DISCUSSION

Characterization by 16S rRNA and 23S rRNA PCR–RFLP

PCR of the 16S rRNA and 23S rRNA gene loci from each of the strains produced a single band of 1-5 and 2-3 kb fragments, respectively, which correspond to the expected size reported previously (Weisburg et al., 1991; Terefe & et al., 1998). The grouping of representative strains by using these methods, as well as the Biolog and AFLP data reported previously (Wolde-meskel et al., 2004b, c), are presented in Tables 1 and 2 (data for all strains are given in Supplementary Tables S1 and S2 in IJSEM Online). Fingerprints of the strains generated by PCR–RFLP of the ribosomal genes were used to construct dendrograms by using UPGMA analysis in the Bionumerics software
Table 1. Representative Ethiopian rhizobial isolates and their grouping results with various molecular biological methods

<table>
<thead>
<tr>
<th>Strain*</th>
<th>Host plant (provenance)</th>
<th>Geographical origin†</th>
<th>Accession no.</th>
<th>PCR–RFLP genotype</th>
<th>Biolog</th>
<th>AFLP</th>
<th>Closest partial 16S rRNA gene sequence</th>
<th>Similarity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC22d (10)</td>
<td>Acacia seyal, Acacia tortilis</td>
<td>NZ, RFC</td>
<td>AY776185</td>
<td>1, 7, 9, 8, 9, 10, 11, 23</td>
<td>1C–1E, 3</td>
<td>6B, 7</td>
<td>Sinorhizobium fredii</td>
<td>100</td>
</tr>
<tr>
<td>AC18a (4)</td>
<td>Acacia seyal, Acacia tortilis</td>
<td>DZ, RFC</td>
<td>AY776180</td>
<td>2, 7, 10, 8, 11, 12</td>
<td>U, 3</td>
<td>7</td>
<td>Sinorhizobium fredii</td>
<td>100</td>
</tr>
<tr>
<td>AC24d1 (2)</td>
<td>Acacia tortilis (Mega)</td>
<td>DZ</td>
<td>–</td>
<td>3, 16, 7, 19</td>
<td>5</td>
<td>5</td>
<td>Sinorhizobium sp.;</td>
<td>–</td>
</tr>
<tr>
<td>AC27c (4)</td>
<td>Acacia tortilis (Meki)</td>
<td>DZ</td>
<td>–</td>
<td>4, 7, 11, 24</td>
<td>1C, 1D</td>
<td>7</td>
<td>Sinorhizobium sp.;</td>
<td>–</td>
</tr>
<tr>
<td>AC27e (3)</td>
<td>Acacia tortilis (Meki)</td>
<td>DZ</td>
<td>AY776187</td>
<td>5, 7, 11, 24</td>
<td>1C, 1D, 4</td>
<td>7</td>
<td>Sinorhizobium fredii</td>
<td>100</td>
</tr>
<tr>
<td>AC01b (14)</td>
<td>Acacia seyal (four provenances)</td>
<td>DZ, NZ, RFC</td>
<td>AY776181</td>
<td>6, 4, 5, 8</td>
<td>1, 2, 3</td>
<td>2, 22, 82</td>
<td>Sinorhizobium saheli</td>
<td>99</td>
</tr>
<tr>
<td>AC18b</td>
<td>Acacia tortilis (Arba-minch)</td>
<td>AK</td>
<td>AY776182</td>
<td>7, 16</td>
<td>8</td>
<td>18</td>
<td>Sinorhizobium fredii</td>
<td>100</td>
</tr>
<tr>
<td>AC10d (3)</td>
<td>Acacia seyal (two provenances)</td>
<td>ACA, NZ</td>
<td>AY776178</td>
<td>8, 2, 17, 5, 6</td>
<td>17, 21, 46</td>
<td>1A, 1B</td>
<td>Sinorhizobium fredii</td>
<td>100</td>
</tr>
<tr>
<td>AC10a1 (3)</td>
<td>Acacia seyal (two provenances)</td>
<td>ACA</td>
<td>AY776177</td>
<td>9, 6, 4</td>
<td>98, 99</td>
<td>1A, 2B</td>
<td>Sinorhizobium saheli</td>
<td>99</td>
</tr>
<tr>
<td>AC27a1 (3)</td>
<td>Sesbania sesban</td>
<td>AM</td>
<td>AY776196</td>
<td>10, 27, 30, 19, 21</td>
<td>16, 126</td>
<td>1A, 1D</td>
<td>Sinorhizobium saheli</td>
<td>99</td>
</tr>
<tr>
<td>AC27b1 (3)</td>
<td>Sesbania sesban</td>
<td>ACA</td>
<td>AY776201</td>
<td>15, 10</td>
<td>27</td>
<td>81</td>
<td>Sinorhizobium meliloti</td>
<td>99</td>
</tr>
<tr>
<td>AC47c</td>
<td>Sesbania sesban</td>
<td>ACA</td>
<td>AY776202</td>
<td>12, 9, 26</td>
<td>81</td>
<td>12</td>
<td>Sinorhizobium sp.;</td>
<td>–</td>
</tr>
<tr>
<td>AC47a</td>
<td>Sesbania sesban</td>
<td>ACA</td>
<td>AY776199</td>
<td>19, 43, 25</td>
<td>73</td>
<td>2A, 8</td>
<td>Sinorhizobium meliloti</td>
<td>100</td>
</tr>
<tr>
<td>AC52c (3)</td>
<td>Sesbania sesban</td>
<td>ACA</td>
<td>AY776177</td>
<td>9, 6, 4, 98, 99</td>
<td>1A, 2B, U</td>
<td>4</td>
<td>Sinorhizobium saheli</td>
<td>99</td>
</tr>
<tr>
<td>AC52a1 (3)</td>
<td>Sesbania sesban</td>
<td>ACA</td>
<td>AY776201</td>
<td>15, 10</td>
<td>27</td>
<td>81</td>
<td>Sinorhizobium meliloti</td>
<td>99</td>
</tr>
<tr>
<td>AC50e (2)</td>
<td>Sesbania sesban</td>
<td>DZ</td>
<td>AY776199</td>
<td>12, 28, 125</td>
<td>U</td>
<td>7</td>
<td>Sinorhizobium fredii</td>
<td>100</td>
</tr>
<tr>
<td>AC52e (2)</td>
<td>Sesbania sesban</td>
<td>DZ</td>
<td>AY776199</td>
<td>12, 28, 125</td>
<td>U</td>
<td>7</td>
<td>Sinorhizobium fredii</td>
<td>100</td>
</tr>
<tr>
<td>AC56b</td>
<td>Sesbania sesban</td>
<td>ACA</td>
<td>AY776201</td>
<td>15, 10</td>
<td>27</td>
<td>81</td>
<td>Sinorhizobium meliloti</td>
<td>99</td>
</tr>
<tr>
<td>AC56a1 (3)</td>
<td>Sesbania sesban</td>
<td>ACA</td>
<td>AY776177</td>
<td>12, 9</td>
<td>26</td>
<td>81</td>
<td>Sinorhizobium sp.;</td>
<td>–</td>
</tr>
<tr>
<td>AC10b (2)</td>
<td>Albizia gummifera, Vicia faba</td>
<td>ACA</td>
<td>AY776223</td>
<td>25, 60, 34</td>
<td>33</td>
<td>U, 1, 6</td>
<td>Rhizobium leguminosarum</td>
<td>100</td>
</tr>
<tr>
<td>AC100b</td>
<td>Acacia senegal</td>
<td>KK</td>
<td>AY776214</td>
<td>26, 21, 40</td>
<td>101</td>
<td>9</td>
<td>Rhizobium leguminosarum</td>
<td>99</td>
</tr>
<tr>
<td>AC100a</td>
<td>Acacia senegal</td>
<td>KK</td>
<td>AY776243</td>
<td>27, 53, 32</td>
<td>100</td>
<td>1, 6</td>
<td>Rhizobium leguminosarum</td>
<td>100</td>
</tr>
<tr>
<td>AC566</td>
<td>Vigna unguiculata</td>
<td>AK</td>
<td>AY776201</td>
<td>32, 54, 33</td>
<td>86</td>
<td>U</td>
<td>Rhizobium etli</td>
<td>100</td>
</tr>
<tr>
<td>AC87k1 (2)</td>
<td>Grevillea sepium</td>
<td>ACA</td>
<td>AY776226</td>
<td>34, 59, 30</td>
<td>31</td>
<td>14</td>
<td>Rhizobium etli</td>
<td>100</td>
</tr>
<tr>
<td>AC87b1 (5)</td>
<td>Grevillea sepium</td>
<td>ACA</td>
<td>AY776226</td>
<td>33, 58, 31</td>
<td>88</td>
<td>U</td>
<td>Rhizobium etli</td>
<td>100</td>
</tr>
<tr>
<td>AC95d1 (2)</td>
<td>Calliandra calothyrsus</td>
<td>ACA</td>
<td>AY776238</td>
<td>40, 23, 41</td>
<td>29</td>
<td>4</td>
<td>Rhizobium etli</td>
<td>100</td>
</tr>
<tr>
<td>AC95a (5)</td>
<td>G. sepium</td>
<td>ACA</td>
<td>AY776234</td>
<td>35, 19, 44</td>
<td>43</td>
<td>5</td>
<td>4</td>
<td>Rhizobium etli</td>
</tr>
<tr>
<td>AC89c (6)</td>
<td>L. leucocephala</td>
<td>ACA</td>
<td>AY776211</td>
<td>26, 45, 28, 42</td>
<td>1, 3</td>
<td>8, 18</td>
<td>Rhizobium etli</td>
<td>99</td>
</tr>
<tr>
<td>AC89a (6)</td>
<td>L. diversifolia</td>
<td>ACA</td>
<td>AY776225</td>
<td>37, 19, 46, 28, 42</td>
<td>1, 3, 4, 3</td>
<td>8</td>
<td>Rhizobium sp.;</td>
<td>–</td>
</tr>
<tr>
<td>AC80a (5)</td>
<td>L. diversifolia</td>
<td>ACA</td>
<td>AY776225</td>
<td>37, 19, 46, 28, 42</td>
<td>1, 3, 4, 3</td>
<td>8</td>
<td>Rhizobium sp.;</td>
<td>–</td>
</tr>
<tr>
<td>AC86c1 (2)</td>
<td>Cajanus cajan</td>
<td>ACA</td>
<td>AY776238</td>
<td>39, 61, 43</td>
<td>35</td>
<td>9</td>
<td>9</td>
<td>Rhizobium sp.;</td>
</tr>
<tr>
<td>AC83e (5)</td>
<td>G. sepium</td>
<td>ACA</td>
<td>AY776223</td>
<td>41, 20, 47</td>
<td>34</td>
<td>10</td>
<td>5</td>
<td>Rhizobium sp.;</td>
</tr>
</tbody>
</table>

Strain refers to the isolation number.
†Geographical origin includes country code (e.g., NZ for Ethiopia) and regional affiliation (e.g., RFC for Central Rift Valley).
<table>
<thead>
<tr>
<th>Strain*</th>
<th>Host plant (provenance)</th>
<th>Geographical origin†</th>
<th>Accession no.</th>
<th>PCR–RFLP genotype</th>
<th>Biolog</th>
<th>AFLP</th>
<th>Closest partial 16S rRNA gene sequence</th>
<th>Similarity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC26e</td>
<td>Acacia tortilis (Meki)</td>
<td>AK</td>
<td>AY776186</td>
<td>44 55 50 111</td>
<td>U</td>
<td>1B</td>
<td>Rhizobium sp.</td>
<td>97</td>
</tr>
<tr>
<td>AC87k3</td>
<td>Millettia ferruginea</td>
<td>ACA</td>
<td>AY776227</td>
<td>45 62 51 27</td>
<td>U</td>
<td>9</td>
<td>Rhizobium sp.</td>
<td>97</td>
</tr>
<tr>
<td>AC88c</td>
<td>Acacia abyssinica</td>
<td>ACA</td>
<td>AY776232</td>
<td>46 79 87 117</td>
<td>U</td>
<td>U</td>
<td>Mesorhizobium chacoense</td>
<td>98</td>
</tr>
<tr>
<td>AC88a</td>
<td>Acacia abyssinica</td>
<td>ACA</td>
<td>AY776231</td>
<td>47 46 52 97</td>
<td>11</td>
<td>19</td>
<td>Rhizobium giardii</td>
<td>99</td>
</tr>
<tr>
<td>AC79c1</td>
<td>Erythrina brucei</td>
<td>ACA</td>
<td>AY776219</td>
<td>51 52 57 90</td>
<td>8</td>
<td>2</td>
<td>Agrobacterium radiobacter</td>
<td>100</td>
</tr>
<tr>
<td>AC42c</td>
<td>Acacia abyssinica</td>
<td>RFC</td>
<td>AY776194</td>
<td>52 39 65 115</td>
<td>7</td>
<td>8</td>
<td>Agrobacterium tumefaciens</td>
<td>99</td>
</tr>
<tr>
<td>AC97c1</td>
<td>Acacia saligna</td>
<td>WC</td>
<td>AY776241</td>
<td>54 38 63 47</td>
<td>13</td>
<td>3</td>
<td>Agrobacterium vitis</td>
<td>99</td>
</tr>
<tr>
<td>AC77b</td>
<td>Acacia senegal</td>
<td>RFC</td>
<td>AY776218</td>
<td>56 51 56 36</td>
<td>U</td>
<td>U</td>
<td>‘Agrobacterium albertimagni’</td>
<td>99</td>
</tr>
<tr>
<td>AC11a</td>
<td>Acacia seyal (two provenances)</td>
<td>ACA, DZ</td>
<td>AY776179</td>
<td>57 63 54 26, 112</td>
<td>8</td>
<td>U</td>
<td>‘Agrobacterium albertimagni’</td>
<td>99</td>
</tr>
<tr>
<td>AC51c</td>
<td>Sesbania sebana, Vigna unguiculata</td>
<td>NZ</td>
<td>AY776200</td>
<td>60 37, 40, 41 58, 60 40, 41, 116</td>
<td>6A, 6B 1A, 1B</td>
<td>Rhizobium hauatulense</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>AC73d</td>
<td>Phaseolus vulgaris</td>
<td>DZ</td>
<td>AY776210</td>
<td>61 50 61 37</td>
<td>6A, 6B 1A, 1B</td>
<td>Rhizobium hauatulense</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>AC100e</td>
<td>Acacia senegal</td>
<td>LC</td>
<td>AY776213</td>
<td>67 72 78 50, 77</td>
<td>2</td>
<td>15</td>
<td>Mesorhizobium plurifarium</td>
<td>99</td>
</tr>
<tr>
<td>AC39a</td>
<td>Acacia abyssinica, Acacia tortilis</td>
<td>CF, RFC</td>
<td>AY776191</td>
<td>68 64–68 70–74 52, 54, 119–121 U 9, 14 4, 10</td>
<td>Mesorhizobium plurifarium</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC99a</td>
<td>Sesbania sebana</td>
<td>WC</td>
<td>AY776184</td>
<td>69 72–74 76, 77 48–50, 118 2, 12 12, 24</td>
<td>Mesorhizobium sp.”</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC99d</td>
<td>Sesbania sebana</td>
<td>WC</td>
<td>AY776211</td>
<td>70 72 75 107</td>
<td>2</td>
<td>24</td>
<td>Mesorhizobium plurifarium</td>
<td>99</td>
</tr>
<tr>
<td>AC98a</td>
<td>Acacia abyssinica</td>
<td>WC</td>
<td>AY776242</td>
<td>71 75, 76 79, 80 51, 74–76 U 15 15</td>
<td>Mesorhizobium plurifarium</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC21c2</td>
<td>Acacia tortilis (Arba-minch)</td>
<td>NZ</td>
<td>AY776184</td>
<td>72 77, 78 85, 86 53, 69 9 8, 16</td>
<td>Mesorhizobium sp.</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC72a</td>
<td>Phaseolus vulgaris</td>
<td>CF</td>
<td>AY776209</td>
<td>73 103 114 45</td>
<td>U</td>
<td>4</td>
<td>Methylobacterium sp.</td>
<td>94</td>
</tr>
<tr>
<td>AC101b</td>
<td>Acacia saligna</td>
<td>LC</td>
<td>AY776214</td>
<td>74 88 92 78</td>
<td>15</td>
<td>3, 10</td>
<td>Bradyrhizobium liaonigense</td>
<td>100</td>
</tr>
<tr>
<td>AC29c</td>
<td>F. albida (Arba-minch)</td>
<td>RFC</td>
<td>AY776189</td>
<td>76 93 107 65</td>
<td>16</td>
<td>4</td>
<td>Bradyrhizobium liaonigense</td>
<td>100</td>
</tr>
<tr>
<td>AC79a</td>
<td>Erythrina brucei</td>
<td>ACA</td>
<td>AY776220</td>
<td>77 82 88 57</td>
<td>15</td>
<td>3</td>
<td>Bradyrhizobium liaonigense</td>
<td>100</td>
</tr>
<tr>
<td>AC104a</td>
<td>Acacia saligna</td>
<td>BL</td>
<td>AY776215</td>
<td>78 86 90 105</td>
<td>18</td>
<td>13</td>
<td>Bradyrhizobium sp.</td>
<td>99</td>
</tr>
<tr>
<td>AC104c1</td>
<td>Acacia saligna (2)</td>
<td>BL</td>
<td>AY776216</td>
<td>79 87 91 106</td>
<td>U</td>
<td>7</td>
<td>Bradyrhizobium sp.</td>
<td>99</td>
</tr>
<tr>
<td>AC62a</td>
<td>Vigna unguiculata</td>
<td>DL</td>
<td>AY776203</td>
<td>81 94 99 67</td>
<td>16</td>
<td>1B</td>
<td>Bradyrhizobium japonicum</td>
<td>99</td>
</tr>
<tr>
<td>AC64a</td>
<td>Vigna unguiculata</td>
<td>NZ</td>
<td>AY776204</td>
<td>82 92, 94 100, 102 61, 66, 68 16 4, 5</td>
<td>Bradyrhizobium yunnanense</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC87b1</td>
<td>Millettia ferruginea</td>
<td>ACA</td>
<td>AY776228</td>
<td>83 99 112 70</td>
<td>16</td>
<td>5</td>
<td>Bradyrhizobium elkantii</td>
<td>100</td>
</tr>
<tr>
<td>AC86b2</td>
<td>Cajanus cajan</td>
<td>ACA</td>
<td>AY776224</td>
<td>84 81 106 55</td>
<td>15</td>
<td>1</td>
<td>Bradyrhizobium japonicum</td>
<td>99</td>
</tr>
<tr>
<td>AC79c2</td>
<td>Erythrina brucei</td>
<td>ACA</td>
<td>AY776221</td>
<td>85 80 105 57</td>
<td>15</td>
<td>1</td>
<td>Bradyrhizobium sp.‡</td>
<td>–</td>
</tr>
<tr>
<td>AC82d</td>
<td>Albizia gummifera</td>
<td>ACA</td>
<td>AY776221</td>
<td>86 81 104 55</td>
<td>15</td>
<td>1</td>
<td>Bradyrhizobium sp.‡</td>
<td>–</td>
</tr>
<tr>
<td>AC92d</td>
<td>Millettia ferruginea</td>
<td>ACA</td>
<td>AY776237</td>
<td>88 83, 89 95, 96 60, 62 15 3</td>
<td>Bradyrhizobium japonicum</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC70c</td>
<td>Phaseolus vulgaris</td>
<td>AK</td>
<td>AY776208</td>
<td>89 95 101 58</td>
<td>16</td>
<td>1B</td>
<td>Bradyrhizobium liaonigense</td>
<td>100</td>
</tr>
</tbody>
</table>
The cophenetic correlation coefficient indicates the consistency of a cluster or the whole dendrogram and calculates the correlation between the dendrogram-derived similarities and the matrix similarities. In this study, cluster analysis based on the Dice coefficient yielded a significantly high mean cophenetic correlation coefficient (generally > 92%), suggesting that the level of distortion between the similarity matrix and cluster analysis was low. In 58 strains, the amplified fragments of the ITS existed as multiple copies of variable size (Supplementary Table S1 in IJSEM Online). This rendered the ITS region unsuitable for use for overall comparison of all the strains.

Characterization based on PCR–RFLP of the 16S rRNA gene distinguished 96 different combinations of patterns, representing 96 distinct 16S rRNA genotypes among all the strains, including the reference species (Tables 1 and 2). The clustering of the strains in the dendrogram (Fig. 1) was in agreement with previously reported RFLP groupings and phylogenetic trees based on whole 16S rRNA gene sequences for rhizobia (Young & Haukka, 1996; Terefework et al., 1998; Nick et al., 1999; Gao et al., 2001). The 71 16S rRNA genotypes identified among the test strains corresponded to five major groups (Fig. 1); 78 strains were variously assigned to the Sinorhizobium branch, 49 to Rhizobium, 8 to Agrobacterium, 20 to Mesorhizobium and 40 to the Bradyrhizobium lineage.

Application of the 23S rRNA gene PCR–RFLP delineated 103 different 23S rRNA genotypes among all the strains studied (78 in the test strains and 25 in the reference strains) (Tables 1 and 2, and Supplementary Fig. S1 in IJSEM Online). The 23S rRNA gene, because of its large size and greater phylogenetic information content, gives better resolution than the 16S rRNA gene (Terefework et al., 1998; Zhang et al., 1999a; Gao et al., 2001). Discrimination of the test strains into a large number of 23S rRNA genotypes in this study supported previous findings. However, the genotypes defined by RFLP of the 16S and 23S rRNA genes were in good agreement in most cases. Exceptions were found among isolates of 12 16S rRNA genotypes (6, 8, 10, 22, 36, 60, 63, 68, 69, 71, 72, 82 and 88) that were divided into two or more 23S rRNA genotypes, and among strains of 16S rRNA genotypes 1, 2, 4 and 5 that belonged to a single 23S rRNA genotype, genotype 7 (Table 1 and Supplementary Table S1 in IJSEM Online).

The combined distance matrices of the 16S and 23S rRNA gene PCR–RFLP patterns revealed the diverse nature of our collection more than either gene alone, and thus identified 114 genotypes among the strains (87 and 27 genotypes among test and reference strains, respectively). The dendrogram constructed (Supplementary Fig. S2 in IJSEM Online) showed more extensive and deeper branching than either of the 16S or 23S rRNA gene PCR–RFLP dendrograms. Whereas all but 13 isolates (representing 16S rRNA genotypes 25, 26, 27, 46, 51, 56, 57 and 73) were classified into the same taxonomic groups as with the 16S rRNA gene

<table>
<thead>
<tr>
<th>Table 1. cont.</th>
<th>Host plant (provenance)</th>
<th>Geographical origin</th>
<th>Accession no.</th>
<th>PCR–RFLP genotype</th>
<th>Comb. ITS</th>
<th>Closer partial 16S rRNA gene sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC57a (3)</td>
<td>Acacia saligna</td>
<td>WG</td>
<td>AY776240</td>
<td>90</td>
<td>60, 63</td>
<td>U, 16, 15, 16, 20</td>
</tr>
<tr>
<td>AC57b (3)</td>
<td>F. albida</td>
<td>RFC</td>
<td>AY776239</td>
<td>91</td>
<td>111, 108</td>
<td>U, 15, 97, 92</td>
</tr>
<tr>
<td>AC57c (3)</td>
<td>Millettia ferruginea</td>
<td>ACA</td>
<td>AY776230</td>
<td>92</td>
<td>109, 93, 60, 63, 17</td>
<td></td>
</tr>
<tr>
<td>AC57d (3)</td>
<td>Albizia gummifera</td>
<td>ACA</td>
<td>AY776236</td>
<td>93</td>
<td>94, 84, 15, 16, 21</td>
<td></td>
</tr>
<tr>
<td>AC107e (2)</td>
<td>Millettia ferruginea</td>
<td>DL</td>
<td>AY776217</td>
<td>95</td>
<td>109, 100, 109, 100, 96</td>
<td></td>
</tr>
</tbody>
</table>

Data from Wolde-meskel et al. (2004a); AC, Awassa College culture collection; numbers in parentheses indicate the number of strains with the same 16S rRNA gene PCR–RFLP patterns.

Locations in southern Ethiopia (Wolde-meskel et al., 2004a): ACA, Awassa College of Agriculture campus; AK, Alakia; AM, Arba-minch; BL, Bule; CF, Chofa; CL, Chilol; DL, Dilla; LZ, Leku; NZ, Nazret; RFC, Research and Farm Centre of the ACA; WG, Wondogenet.

16S rRNA genotype (partial sequence not determined).
PCR–RFLP method, cluster analysis of the combined 16S and 23S rRNA PCR–RFLP data resulted in further discrimination of the strains, and hence identified more genotypes within the same taxon. Thus, the number of different genotypes assigned to the *Rhizobium* branch increased from 20 (16S rRNA genotypes) to 24 (combined 16S and 23S rRNA genotypes), and from 20 to 24 in the *Sinorhizobium* branch, 6 to 13 in the *Bradyrhizobium* branch. The more-heterogeneous nature of the isolates that the combined RFLP pattern revealed in the *Mesorhizobium* branch was remarkable (Supplementary Fig. S2 in IJSEM Online), and supports previous reports on strains belonging to the genus *Mesorhizobium* (de Lajudie et al., 1998; Zhang et al., 1999a; Wang et al., 2003).

Interestingly, apart from a few isolates, all the test strains in the different taxonomic branches formed a number of tightly clustered, separate subgroups in all the parameters studied (Fig. 1 and Supplementary Figs S1 and S2 in IJSEM Online) and were related to the reference strains at most with 88% similarity, hence reflecting their distinct genotypic nature. This was supported by the tight and separate clusters that the reference species consistently formed in all the dendrograms constructed (Fig. 1 and Supplementary Figs S1 and S2 in IJSEM Online). In addition, in previous studies, a large number of test strains (80%) in our collection had metabolic and genomic (AFLP) profiles that were not related to reference species (Wolde-meskel et al., 2004b, c). This contrasts with the findings of Odee et al. (2002) and Bala et al. (2002, 2003) where, in a study of a large number

Table 2. Reference strains and their grouping results with various molecular biological methods

<table>
<thead>
<tr>
<th>Strain</th>
<th>Accession no.</th>
<th>PCR–RFLP genotype</th>
<th>Biolog</th>
<th>AFLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinorhizobium kostense HAMBI 1489<sup>T</sup> (=LMG 15613<sup>T</sup>)</td>
<td>Z78203</td>
<td>13 13 16 91</td>
<td>U 9</td>
<td></td>
</tr>
<tr>
<td>Sinorhizobium saheli HAMBI 215<sup>T</sup> (=ORS 609<sup>T</sup>)</td>
<td>X68390</td>
<td>13 11 17 127</td>
<td>1A 9</td>
<td></td>
</tr>
<tr>
<td>Sinorhizobium teranga HAMBI 220<sup>T</sup> (=ORS 1009<sup>T</sup>)</td>
<td>X68388</td>
<td>14 14 18 104</td>
<td>2A 11</td>
<td></td>
</tr>
<tr>
<td>Sinorhizobium arboris HAMBI 1552<sup>T</sup> (=LMG 14919<sup>T</sup>)</td>
<td>Z78204</td>
<td>16 15 20 15</td>
<td>2A 9</td>
<td></td>
</tr>
<tr>
<td>Sinorhizobium medicae HAMBI 1838 (=LMG 16582)</td>
<td>L39882</td>
<td>17 44 24 13</td>
<td>2A 9</td>
<td></td>
</tr>
<tr>
<td>Sinorhizobium meliloti HAMBI 2148<sup>T</sup> (=LMG 6133<sup>T</sup>)</td>
<td>X67222</td>
<td>17 44 24 14</td>
<td>2A 9</td>
<td></td>
</tr>
<tr>
<td>Rhizobium leguminosarum HAMBI 12<sup>T</sup> (=LMG 14904<sup>T</sup>)</td>
<td>U29386</td>
<td>28 56 35 110</td>
<td>1A 15</td>
<td></td>
</tr>
<tr>
<td>Rhizobium etli HAMBI 1727<sup>T</sup> (=CFN 42<sup>T</sup>)</td>
<td>U28916</td>
<td>29 57 36 93</td>
<td>U 11</td>
<td></td>
</tr>
<tr>
<td>Rhizobium hainanense HAMBI 1930<sup>T</sup></td>
<td>U71078</td>
<td>30 49 39 92</td>
<td>10 9</td>
<td></td>
</tr>
<tr>
<td>Rhizobium tropici HAMBI 1163<sup>T</sup> (=CIAT 899<sup>T</sup>)</td>
<td>X67234</td>
<td>30 47 37 94</td>
<td>10 U</td>
<td></td>
</tr>
<tr>
<td>Agrobacterium rhizogenes HAMBI 1816<sup>T</sup> (=LMG 150<sup>T</sup>)</td>
<td>X67224</td>
<td>31 48 38 87</td>
<td>10 U</td>
<td></td>
</tr>
<tr>
<td>Rhizobium mongolense HAMBI 2349<sup>T</sup> (=USDA 1844<sup>T</sup>)</td>
<td>U89816</td>
<td>42 22 48 44</td>
<td>U 15</td>
<td></td>
</tr>
<tr>
<td>Rhizobium gallicum HAMBI 2326<sup>T</sup></td>
<td>U68343</td>
<td>43 26 49 95</td>
<td>15 15</td>
<td></td>
</tr>
<tr>
<td>Rhizobium guidini HAMBI 2323<sup>T</sup></td>
<td>U68344</td>
<td>48 45 53 103</td>
<td>U U</td>
<td></td>
</tr>
<tr>
<td>Agrobacterium tumefaciens HAMBI 1811<sup>T</sup> (=LMG 187<sup>T</sup>)</td>
<td>X67223</td>
<td>49 31 66 102</td>
<td>11 13</td>
<td></td>
</tr>
<tr>
<td>Agrobacterium radiobacter HAMBI 1814<sup>T</sup> (=LMG 140<sup>T</sup>)</td>
<td>A389904</td>
<td>50 31 67 102</td>
<td>11 13</td>
<td></td>
</tr>
<tr>
<td>Agrobacterium rubi HAMBI 1812<sup>T</sup> (=LMG 156<sup>T</sup>)</td>
<td>X67228</td>
<td>53 32 68 79</td>
<td>7 8</td>
<td></td>
</tr>
<tr>
<td>Agrobacterium vitis HAMBI 1817<sup>T</sup> (=LMG 8750<sup>T</sup>)</td>
<td>X67225</td>
<td>55 34 64 84</td>
<td>U 13</td>
<td></td>
</tr>
<tr>
<td>Rhizobium gallegae HAMBI 540<sup>T</sup> (=LMG 6214<sup>T</sup>)</td>
<td>X67226</td>
<td>58 25 55 80</td>
<td>U U</td>
<td></td>
</tr>
<tr>
<td>Rhizobium huautense HAMBI 2409<sup>T</sup></td>
<td>A025852</td>
<td>59 35 59 38</td>
<td>6B 16</td>
<td></td>
</tr>
<tr>
<td>Allorhizobium undicola LMG 11875<sup>T</sup></td>
<td>Y17047</td>
<td>62 33 69 83</td>
<td>8 9</td>
<td></td>
</tr>
<tr>
<td>Mesorhizobium ciceri HAMBI 1750<sup>T</sup> (=LMG 14989<sup>T</sup>)</td>
<td>U07934</td>
<td>63 69 81 123</td>
<td>U 14</td>
<td></td>
</tr>
<tr>
<td>Mesorhizobium loti HAMBI 1129<sup>T</sup> (=LMG 6125<sup>T</sup>)</td>
<td>X67229</td>
<td>64 69 82 122</td>
<td>U 14</td>
<td></td>
</tr>
<tr>
<td>Mesorhizobium mediterraneum HAMBI 2096<sup>T</sup></td>
<td>L38825</td>
<td>65 70 83 89</td>
<td>U U</td>
<td></td>
</tr>
<tr>
<td>Mesorhizobium huakui HAMBI 1674<sup>T</sup> (=LMG 14107<sup>T</sup>)</td>
<td>D12797</td>
<td>66 71 84 124</td>
<td>7 16</td>
<td></td>
</tr>
<tr>
<td>Bradyrhizobium japonicum HAMBI 2314<sup>T</sup> (=USDA 63<sup>T</sup>)</td>
<td>X66024</td>
<td>75 96 89 108</td>
<td>U U</td>
<td></td>
</tr>
<tr>
<td>Bradyrhizobium elkanii LMG 6134<sup>T</sup></td>
<td>U35000</td>
<td>80 101 110</td>
<td>109 15</td>
<td></td>
</tr>
<tr>
<td>Azorhizobium caulinosum HAMBI 216<sup>T</sup> (=ORS 571<sup>T</sup>)</td>
<td>X67221</td>
<td>96 102 113</td>
<td>85 U</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Dendrogram based on the RFLP analysis of PCR-amplified 16S rRNA genes of test and reference strains. The distinct genotypes are numbered in order of their appearance. Numbers in parentheses indicate the number of strains that had the same restriction pattern (genotypes). The data were clustered by using UPGMA in the Bionumerics program.
of tree rhizobia isolated from Kenya and southern parts of Africa, many strains had identical 16S rRNA genotypes to the reference rhizobial strains included in the study.

Phylogenetic analysis

To elucidate the taxonomic positions of the isolates, we partially sequenced the 16S rRNA genes of 67 strains representing the various 16S rRNA PCR–RFLP genotypes. The aligned sequences of the Ethiopian strains, and those of recognized species of rhizobia, agrobacteria and other related symbiotic and non-symbiotic species, were used in the phylogenetic analysis. The results are presented in Fig. 2, and were consistent with previous reports (Young et al., 2001; Toledo et al., 2003; Sawada et al., 2003). Overall, 46 different 16S rRNA gene sequence types representing six genera were found (Fig. 2); 13 were clustered within 46 different 16S rRNA gene sequence types representing branch, four within the Rhizobium branch, 12 within the Bradyrhizobium branch, four within the Agrobacterium branch, eight each within Sinorhizobium and Mesorhizobium and one within the Methylobacterium branch. Twelve of the 46 rRNA genotypes had 100 % partial sequence similarity with one or more species of the first four genera, whereas the other 34 were novel and were related (with 94–99 % similarity) to members of one of these six genera (Table 1 and Supplementary Table S1 in IJSEM Online).

Rhizobium and Agrobacterium branches. Nine of the 13 Rhizobium genotypes (in groups I, III, V, VII and IX; Fig. 2) were typical of previously described species and showed high sequence similarity (99–100 %) to Rhizobium etli, Rhizobium leguminosarum, Rhizobium mongolense, Rhizobium giardinii and Rhizobium huautlense. However, four 16S rRNA gene sequences in groups II, IV, VI and VIII (representing strains AC86a, AC86c1, AC26e and AC87k3, respectively) were distinct, with 16S rRNA gene similarities with the most similar published sequences of as low as 97 %, a ‘threshold’ for species delineation (Stackebrandt & Goebel, 1994), hence possibly representing novel species. Interestingly, several Rhizobium genotypes in this study showed high similarity to non-described Rhizobium strains isolated from China.

(i) The two genotypes in group V, which were related to Rhizobium mongolense (99 %) and represented 23 strains isolated from three host species (Supplementary Table S1 in IJSEM Online), instead showed 100 % partial sequence similarity to strain X59, an isolate from Astragalus adsurgens (Gao et al., 2001). In a polyphasic study, Gao et al. (2001) reported that strain X59 had a unique genotype that was closely related to a strain isolated from another Astragalus species, Astragalus membranacens (Wang & Chen, 1996).

(ii) Strains SDW024 and SDW058, which were isolated from Astragalus adsurgens (Gao et al., 2001), and USDA 1920, a strain isolated from Medicago ruthenica in China (van Berkum et al., 1998), had the most similar published sequences found in the database (97–98 %), matching strains AC86a (group II), AC87k3 (VIII) and AC86c1 (IV), respectively, in our study.

There is no known documented history of the introduction of rhizobial inoculants from China into Ethiopia, or vice versa, nor, in fact, from any other part of the world. However, because of the highly conserved nature of the 16S rRNA gene sequence, the existence of alike genotypes or similar sequences in widely separated geographical regions under varying environmental conditions is to be expected (Martín-Romero & Caballero-Mellado, 1996; Moreira et al., 1998). Although allopatry could not be implicated and recombination within and between ribosomal genes has been shown (Young & Haukka, 1996), it is also possible that divergent evolution in rhizobia took place independently in several locations. A thorough study of the core and accessory genome of these and other Ethiopian isolates might reveal very interesting insights into rhizobial evolution.

The partial sequence analysis of AC26e, a strain isolated from Acacia tortilis, showed a mosaic 16S rRNA gene, which was related (97 %) to Sinorhizobium sp. 9702-M4, a strain reported to synthesize an extracellular polymer that facilitates the transport of hydrophobic pollutants as well as toxic metals, lead and cadmium, in soil (Janeca et al., 2002). However, it formed a separate phylogenetic branch within the genus Rhizobium and showed distinct metabolic reactions in a previous Biolog study (Wolde-meskel et al., 2004b).

Among the eight strains isolated from root nodules of Erythrina brucei and Acacia species, four Agrobacterium genotypes were identified (Fig. 2). These included Agrobacterium radiobacter (100 % partial sequence similarity), Agrobacterium tumefaciens (99 %), Agrobacterium vitis (99 %) and ‘Agrobacterium albertimagni’ (99 %). In previous studies, a large number of strains with 16S rRNA gene sequences that were very similar to that of Agrobacterium tumefaciens were isolated from herbaceous (Phaseolus vulgaris and Vigna unguiculata) and tree legume species grown in African soils (Anyango et al., 1995; Khbaya et al., 1998; de Lajudie et al., 1999; Odee et al., 2002; Bala & Giller, 2001; Bala et al., 2003). A cross-inoculation study conducted to evaluate symbiotic effectiveness (data not presented) showed that the strains were not capable of eliciting nodulation on homologous or other host species, in agreement.

Fig. 2. Phylogenetic tree of selected Ethiopian rhizobial strains and related bacteria within the class ‘Alphaproteobacteria’. The tree was constructed using the neighbour-joining method from partial 16S rRNA gene sequences. Bootstrap probability values greater than 50 % are indicated at the branch points. Bar, 0·1 substitution per site. Roman numerals indicate groups of different test strains in the respective genus, whereas numbers in parentheses represent the various 16S rRNA gene sequence types in the group. ●, Closely related but non-symbiotic bacteria.
with other studies. The agrobacterial isolates that were reported to be capable of infection after isolation from nodules (Bala & Giller, 2001) thus seem to represent an exception. However, all of our strains except one had novel sequences, with 99% partial sequence similarity to each of their described counterparts, and were classified in different AFLP and Biolog groups in previous studies (Wolde-meskel et al., 2004b, c). In addition, this is the first report of strains with high similarity to ‘Agrobacterium albertimagni’, an arsenite-oxidizing bacterium from aquatic macrophytes in a hot creek (Salmassi et al., 2002), being isolated from root nodules of plants in African soil.

Sinorhizobium lineage. All representative isolates in this group were phylogenetically affiliated to one of five species: *Sinorhizobium fredii, Sinorhizobium meliloti, Sinorhizobium medicace, Sinorhizobium saheli* and *Ensifer adhaerens* (Fig. 2). Although only partial sequences were used, all isolates except those identified as belonging to the species *Sinorhizobium fredii* had novel 16S rRNA gene sequences, with 99% sequence similarity to the respective reference species (Table 1). It is interesting to note that, with the exception of 11 strains isolated from *Sesbania sesban*, all of the other 61 strains associated with the *Sinorhizobium* branch were isolated from *Acacia* species (Table 1 and Supplementary Table S1 in IJSEM Online). The type strain of *Sinorhizobium terangae* was isolated from *Sesbania* and *Acacia* species in Senegalese soils (de Lajudie et al., 1994), whereas *Sinorhizobium arboris* and *Sinorhizobium kostiense* were isolated from *Acacia senegal* and *Prosopis chilensis*, in Kenyan and Sudanese soils, respectively (Nick et al., 1999). Despite extensive sampling that covered a wide range of ecoclimatic and altitudinal zones in Ethiopia (Wolde-meskel et al., 2004a), and the use of the same and/or related trap host species of similar rhizobial affinities, no strains closely related to these genotypes were found. However, two and three different genotypes were represented in *Sinorhizobium meliloti* and *Sinorhizobium saheli*, respectively (Fig. 2).

Three strains (AC47a, AC47b and AC47d) that were closely related to *Ensifer adhaerens* (99% partial sequence similarity) were isolated from a location (Arba-minch) that is characterized by a high soil pH (8–9) and temperature (Wolde-meskel et al., 2004a). Interestingly, these strains were 100% similar to an undescribed high-temperature and halotolerant *Sinorhizobium* species isolated from seaside areas in Taiwan (Chen et al., 2000). This may reflect the role of the habitats of the strains in shaping the rhizobial genotypes, and possibly the in situ population structure of rhizobia (Wang et al., 1999, 2003; Wang & Martinez-Romero, 2000). These strains offer the possibility of enhancing nitrogen fixation in saline–alkaline conditions where the efficiency of rhizobium–legume symbiosis is hampered.

Mesorhizobium branch. Phylogenetic analysis of nine strains, representing 20 isolates in this group (Fig. 2 and Supplementary Table S1 in IJSEM Online), identified two species, *Mesorhizobium chacoense* (one strain) and *Mesorhizobium plurifarium* (eight strains), with 98 and 99% partial sequence similarities, respectively. However, with the exception of two strains (AC100e and AC98a), which had 100% sequence similarity, all of the strains in the latter species exhibited nucleotide differences (substitutions, insertions or gaps) at up to 13 positions (depending on the strain) (data not shown). Hence, these represented seven different genotypes supported by a high bootstrap value (Fig. 2). All the strains linked to this species were shown to be metabolically and genomically diverse in previous studies (Supplementary Table S1 in IJSEM Online). The heterogeneous nature of these strains is in agreement with a previous report on strains of *Mesorhizobium plurifarium* isolated from *L. leucocephala* and *Sesbania herbacea* in Mexican soils (Wang et al., 2003). The relatively low sequence similarity of strain AC88c to *Mesorhizobium chacoense*, a *Prosopis alba* symbiont from Argentina (Velázquez et al., 2001) not previously reported from an African soil, suggests that this strain might represent a novel species.

Bradyrhizobium lineage. Compared with the large number of fast-growing rhizobial species, until recently only four species of *Bradyrhizobium* had been described (Bradyrhizobium japonicum, *Bradyrhizobium elkanii, Bradyrhizobium yuanmingense* and *Bradyrhizobium liaoningense*) (Sawada et al., 2003). However, by using several taxonomic techniques, such as numerical taxonomy, Biolog, SDS-PAGE, AFLP fingerprinting, and ITS and 16S rRNA gene sequencing, a large number of bradyrhizobia from various parts of the world have been studied, and several groups of strains with different phenotypic features and genomic profiles have been identified (Zhang et al., 1999b; van Berkum & Fuhrmann, 2000; Lafay & Burdon, 2001; Willems et al., 2001, 2003). In previous studies, we reported large metabolic and genomic diversity in 40 slow-growing strains isolated from eight different host species (Wolde-meskel et al., 2004b, c). Phylogenetic analysis of 21 representative strains in this study delineated eight distinct groups, in which 12 different partial 16S rRNA gene sequence types (genotypes) were represented (Fig. 2). All strains in groups I and VIII (except one strain in each) showed 100% partial sequence similarity to the type strains of *Bradyrhizobium liaoningense* and *Bradyrhizobium elkanii*, respectively (Table 1). Exceptions were strains AC86b2 (group I) and AC87b1 (group VIII), which had nucleotide substitutions at positions 29 (A→C) and 61 (G→C), respectively. All strains in the other groups (II–VII) had novel sequences, but were closely related (99%) to *Bradyrhizobium japonicum* or *Bradyrhizobium yuanmingense*. Interestingly, the extralow-growing strains (Wolde-meskel et al., 2004a) in group II and the three others in group VII, which showed distinct metabolic and genomic profiles in previous studies (Table 1), also formed separate phylogenetic groups in this study (Fig. 2). The 16S rRNA gene
of bradyrhizobia has been reported to show little variation (Barrera et al., 1997) and can be identical as, for example, *Bradyrhizobium luoeningense* and *Bradyrhizobium japonicum* (van Berkum & Fuhrmann, 2000). Hence, RFLP or sequence analysis of this molecule may provide little discrimination. In view of this, and the high metabolic and genomic diversity of the test strains, which did not relate to reference species in earlier studies (Wolde-meskel et al., 2004b, c), our collection may represent a number of yet unrecognized taxa in the genus *Bradyrhizobium*, and further taxonomic analysis would be justified.

Methylobacterium strain. Phylogenetic analysis of an almost full-length (1387 bp) 16S rRNA gene sequence of AC72a, a strain from a root nodule of *Phaseolus vulgaris*, revealed that it belonged to the *Methylobacterium* lineage of the class ‘Alphaproteobacteria’ (Fig. 2). It showed 90 % sequence similarity with *Methylobacterium nodulans*, the only symbiotic *Methylobacterium* species identified to date, from root nodules of *Crotalaria* sp. in Senegal (Sy et al., 2001). Other published closest phylogenetic neighbours in the genus were *Methylobacterium organophilum* (93 %) and *Methylobacterium* sp. strain F48 (94 %), suggesting that strain AC72a might represent another novel symbiotic species in the genus. The strain also formed a separate cluster using Biolog (Wolde-meskel et al., 2004b), 23S rRNA gene and combined 16S rRNA and 23S rRNA gene PCR–RFLP studies (Table 1 and Supplementary Figs S1 and S2 in IJSEM Online). Characteristically, AC72a was a fast-growing strain (>3 mm colony size in 2–3 days) on Yeast Mannitol Agar at 28 °C, which is in agreement with previous reports for strains belonging to *Methylobacterium nodulans* (Samba et al., 1999; Sy et al., 2001). However, poor growth occurred in liquid culture medium (yeast mannitol broth), even when a longer incubation time (up to 9 days) was used, after which characteristic pink-pigmented clumps in the solution were produced. In contrast to *Methylobacterium nodulans*, AC72a formed effective nodules on *Vigna unguiculata* and intermittently elicited nodules on * Sesbania sesban* and *F. albida* seedlings (data not shown). Although further phenotypic characterization of strain AC72a, and isolation and analysis of various nodulation genes are under way to establish whether the strain uses the same molecular mechanisms as rhizobia, our results emphasize that much greater diversity can be expected following the characterization of symbionts of unexplored legumes and by focusing on previously unexplored biogeographical areas.

Symbionts of previously unexplored woody legume species. *Acacia abyssinica*, *Albizia gummiﬁera*. *Erythrina brucei* and *Milletia ferruginea* have been little studied, but are known to be locally important, indigenous woody legumes that have been integrated into traditional agroforestry systems in the highlands of Ethiopia as well as in East Africa (Hunde & Thulin, 1989; Al Amin, 1990; Mbuya et al., 1994). This is the first reported phylogenetic analysis of isolates from these trees, and the results show associated rhizobia belonging to diverse groups. For example, strains of *Acacia abyssinica* were phylogenetically related to seven different rhizobial species in four genera (including *Agrobacterium*). It is interesting to note that a number of the strains associated with the trees were novel, with sequence similarities of 98–99 % with the recognized species. In view of this and previous reports (Wolde-meskel et al., 2004b, c), which showed that there was a wide range of metabolic and genomic diversity that was not related to reference species, it is likely that several groups of these strains represent potentially novel species. The diversity shown in this study supports the view that long-term association between rhizobia and indigenous host species would allow gradual differentiation and diversity in the natural rhizobial population resident in the host’s native soils (Andronov et al., 2003; Wang et al., 2003). Furthermore, the observed genetic diversity in indigenous rhizobial populations provides an opportunity to improve nitrogen fixation in agroforestry systems through the selection of efficient rhizobium–legume combinations.

Comparative grouping of strains by using the various methods. The 16S rRNA gene PCR–RFLP pattern has been used to detect potential novel taxa of new isolates (Laguerre et al., 1994; Heyndrickx et al., 1996). It is also known that a longer stretch of the 16S rRNA gene (e.g. 800 bp instead of 300 bp) contains a conserved region that is sufficient to show the variation within groups of root-nodule bacteria, hence its frequent use to infer the phylogenetic affiliation of novel isolates (Terefework et al., 1998; Odee et al., 2002; Bala et al., 2003). In this study, by using 16S rRNA gene PCR–RFLP, several subgroups were identified that had relatively low similarity (at most 85 %) to recognized species within the various genera (Fig. 1). This was also supported by the 23S rRNA gene and the combined PCR–RFLP pattern analyses results (Supplementary Figs S1 and S2 in IJSEM Online). However, strains representing distinct PCR–RFLP subgroups [for example, AC01b (16S rRNA gene PCR–RFLP genotype 6) and AC47c (genotype 12) in the *Sinorhizobium* branch; Fig. 1] showed 99–100 % partial sequence similarity to the recognized species (*Sinorhizobium saheli* and *S. fredii*, respectively; Table 1). While the disparity of these methods in resolving the test rhizobial strains into species remains, the possibility that undetected differences might exist in the second 800 bp stretch of the 16S rRNA gene cannot be excluded. Previously, various segments of the 16S rRNA gene sequence have been reported to provide differing phylogenetic signals (Eardly et al., 1996).
Fig. S1 in IJSEM Online). It is also interesting to note the differences among grouping results obtained with the various approaches/methodologies used: Biolog and AFLP fingerprinting, ITS, 16S and 23S rRNA gene PCR–RFLP, and 16S rRNA gene partial sequence analyses (Table 1 and Supplementary Table S1 in IJSEM Online). For example, strains representing 16S rRNA PCR–RFLP genotype 6 were grouped into each of three different groups of the 23S rRNA and combined PCR–RFLP genotypes, whereas the same strains were grouped into four and two different Biolog and AFLP groups, respectively (Table 1). A similar situation has been reported in other studies (Wang et al., 2003), further demonstrating the necessity for polyphasic approaches in bacterial taxonomy.

In conclusion, by using metabolic and several modern molecular biological methodologies, we identified, within 195 rhizobial strains, several groups of rhizobia and a Methylobacterium strain that were not related to the recognized taxa. Phylogenetically, 34 out of 46 identified genotypes (74%) represented novel partial 16S rRNA gene sequence types, which related to six known genera. This wide phylogenetic diversity of the strains that were isolated from a relatively small number of leguminous species has further strengthened the views of other workers (Odee et al., 2002) that this sub-Saharan region might be an important centre of rhizobial biodiversity. Ethiopia, in particular, as the origin of several legumes and a centre of diversity for other plants, is a promising prospect for unearthing previously unidentified rhizobia that are more diverse and for elucidating the molecular evolution of rhizobium–legume symbiosis.

ACKNOWLEDGEMENTS

This work was funded by NUFU (Norwegian Universities Committee for Development Research and Education). E. W-m. is grateful to Länekassen, Norway, for a PhD stipend and NorFA for providing a mobility scholarship. Thanks are due to all members of the nitrogen fixation research group at the Biocenter 1, University of Helsinki.

REFERENCES

