During a search for xylan-degrading micro-organisms, a sporulating bacterium was recovered from xylan-containing agar plates exposed to air in a research laboratory (Salamanca University, Spain). The airborne isolate (designated strain XIL14T) was identified by 16S rRNA gene sequencing as representing a Paenibacillus species most closely related to Paenibacillus illinoisensis JCM 9907T (99.3 % sequence similarity) and Paenibacillus pabuli DSM 3036T (98 % sequence similarity). Phenotypic, chemotaxonomic and DNA–DNA hybridization data indicated that the isolate belongs to a novel species of the genus Paenibacillus. Cells of strain XIL14T were motile, sporulating, rod-shaped, Gram-positive and facultatively anaerobic. The predominant cellular fatty acids were anteiso-C15 : 0 and C16 : 0. The DNA G+C content of strain XIL14T was 50.5 mol%. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. Catalase was positive and oxidase was negative. The airborne isolate produced a variety of hydrolytic enzymes, including xylanases, amylases, gelatinase and b-galactosidase. DNA–DNA hybridization levels between strain XIL14T and P. illinoisensis DSM 11733T and P. pabuli DSM 3036T were 43.3 and 36.3 %, respectively. According to the data obtained, strain XIL14T is considered to represent a novel species for which the name Paenibacillus xylanilyticus sp. nov. is proposed (=LMG 21957T = CECT 5839T).

Xylan is a heterogeneous polymer composed of (1,4)-linked b-D-xylosyl residues. It is very abundant in nature, being the major component of hemicelluloses of monocotyledon cell walls. Xylanases (1,4-b-D-xylanohydrolase) are a group of xylanolytic enzymes that hydrolyse xylan to xylan-oligosaccharides and xylose. The genus Paenibacillus, which was originally proposed by Ash et al. (1993) (valid publication by Ash et al., 1994), contains some species that are able to hydrolyse xylan (Ay et al., 1998; Hespell, 1996; Lee et al., 2000; Morales et al., 1995; Nielsen & Sorensen, 1997; Zamost et al., 1991). Recently, a novel xylanolytic Paenibacillus species, Paenibacillus favisporus, was described (Velázquez et al., 2004).

Within the framework of a screening programme to search for xylan-degrading micro-organisms, we isolated a bacterial strain (XIL14T) that actively hydrolysed xylan. Isolation was made in YNBX medium containing xylan as single source of carbon, as previously described (Velázquez et al., 2004). Colonies of the airborne bacterium were cream coloured, opaque, rounded and convex.

Strain XIL14T was grown for 48 h and motility was checked under a scanning electron microscope. Gram behaviour of the cells was ascertained by staining (Doetsch, 1981). Cells of strain XIL14T were Gram-positive, rod-shaped, sporulating and motile (peritrichous flagellation).

Amplification and sequencing of the 16S rRNA gene were performed as described by Rivas et al. (2003a). The sequence obtained was compared with those from GenBank using the FASTA program (Pearson & Lipman, 1988). Sequences were aligned using the CLUSTAL W software (Thompson et al., 1997). Distances were calculated by using the method of Kimura (1980). Phylogenetic trees were inferred using the neighbour-joining method (Saitou & Nei, 1987). The MEGA 2.1.0 package (Kumar et al., 2001) was used for all analyses.

The complete (1546 bp) 16S rRNA gene sequence of strain XIL14T was determined. A comparison against the 16S rRNA gene sequences held in the GenBank database indicated that strain XIL14T is phylogenetically related to strains and species of the genus Paenibacillus. 16S rRNA
gene sequence similarities to all other recognized Paenibacillus species ranged from 89·8 % with Paenibacillus alginolyticus to 99·3 % with Paenibacillus illinoisensis. Fig. 1 shows the phylogenetic tree obtained with the neighbour-joining method (a more complete phylogenetic tree is available as a supplementary figure in IJSEM Online). The closest related recognized species are P. illinoisensis JCM 9907T (=DSM 11733T) with 99·3 % similarity and Paenibacillus pabuli DSM 3036T with 98·4 % similarity.

For base composition analysis, DNA was prepared according to the method of Chun & Goodfellow (1995), and the G+C content was determined using the thermal denaturation method (Mandel & Marmur, 1968). The DNA G+C content of strain XIL14T was 50·5 mol%.

For DNA–DNA hybridization analyses, DNA was isolated by chromatography on hydroxyapatite by the procedure of Cashion et al. (1977), which was carried out as described by De Ley et al. (1970) but with the modifications described by Huß et al. (1983) and Escara & Hutton (1980). Renaturation rates were determined with the TRANSFER.BAS program (Jahnke, 1992). DNA–DNA relatedness was tested in [2 × SSC + 10 % (v/v) DMSO at 68 °C] among strains XIL14T, P. illinoisensis DSM 11733T and P. pabuli DSM 3036T. Levels of DNA–DNA relatedness between strain XIL14T and P. illinoisensis DSM 11733T and P. pabuli DSM 3036T were 43·3 and 36·3 %, respectively. These results indicate that strain XIL14T is not a representative of either of these species, using the recommended threshold value of 70 % DNA–DNA relatedness for the definition of genomic species (Wayne et al., 1987).

The predominant fatty acids analysed by GLC as described by Rivas et al. (2003b) were anteiso-C15:0, C16:0, respectively comprising 47·9 and 16·6 % of the total. These values coincide with those reported for P. illinoisensis and P. pabuli (Shida et al., 1997a, b) (Table 2). Other fatty acids detected were C16:1ω11c (8·1 %), iso-C15:0 (7·1 %), anteiso-C17:0 (4·9 %), iso-C16:0 (4·7 %), C17:0 (4·5 %), C14:0 (3·9 %) and iso-C14:0 (2·3 %).

Phenotypic characterization was performed according to the standard methods described by Claus & Berkeley (1986) and Logan & Berkeley (1984) using strains P. illinoisensis DSM 11733T and P. pabuli DSM 3036T as references. The API 20E and API 20NE systems were also used to characterize the isolate according to the manufacturer’s instructions (bioMérieux). Table 1 lists the phenotypic properties of strain XIL14T as well as those of closely related Paenibacillus species. Strain XIL14T differs from P. illinoisensis in terms of acetoin production, final pH in Voges–Proskauer medium, caseinase, growth at pH 5·6 and growth at 50 °C. It differs with respect to P. pabuli in terms of optimum growth temperature, acetoin production and growth at pH 5·6.

Therefore, on the basis of the polyphasic taxonomic data we propose that isolate XIL14T should be classified as a novel Paenibacillus species, for which the name Paenibacillus xylanilyticus sp. nov. is proposed.

Description of Paenibacillus xylanilyticus sp. nov.

Paenibacillus xylanilyticus (xy.la.ni.ly´ti.cus. N.L. n. xylanum xylan; Gr. adj. lytikos able to loosen; N.L. adj. lyticus -um dissolving; N.L. masc. adj. xylanilyticus xylan-dissolving).

Cells are rod-shaped, measuring 3·9–4·4 × 1·5–1·55 μm and motile by means of peritrichous flagella. Oval subterminal
spores are formed that slightly swell the sporangia. Colonies grown (48 h, 37 °C) on YNBX agar are circular, convex, cream-coloured, opaque and usually 1–3 mm in diameter. Cells are facultatively anaerobic and stain Gram-positive. Optimum growth temperature is 37 °C and optimum pH is 7. Oxidase-negative and catalase-positive. The DNA G+C content of the type strain is 50.5 mol%. The predominant fatty acids are anteiso-C₁₅:0 and C₁₆:0. Does not produce gas from glucose. Acid is produced from D-glucose, L-arabinose, N-acetylglucosamine, sucrose, D-mannose, rhamnose, melibiose, maltose, xylose and mannitol. Able to use xylan as a carbon source. Unable to use inositol, sorbitol, citrate, propionate, caprate, adipate, malate or phenylacetate as sole sources of carbon. Produces xylanases, gelatinase, amylase and arabinofuranosidase from Bacillus polymyxa (Voges–Proskauer medium). Nitrate reduction to nitrite is positive.

The type strain, XIL14^T (=LMG 21957^T==CECT 5839^T), was isolated from air in a research laboratory from Salamanca University, Spain.

Acknowledgements

This work was supported by Spanish Government Grants to E. M.-M. and E. V. We are grateful to Professor Dr R. M. Kroppenstedt and Dr P. Schumann (DSMZ, Braunschweig, Germany) for their help with analysis of fatty acid methyl esters and DNA–DNA hybridization, respectively.

References

Table 2. Percentage of total cellular fatty acids from strain XIL14^T and phylogenetically related species of the genus Paenibacillus

<table>
<thead>
<tr>
<th>Fatty acid 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>14</sub>:0</td>
<td>3-9</td>
<td>2-0</td>
<td>0-7</td>
</tr>
<tr>
<td>C<sub>15</sub>:0</td>
<td>ND</td>
<td>1-0</td>
<td>0-1</td>
</tr>
<tr>
<td>C<sub>16</sub>:0</td>
<td>16-6</td>
<td>24-7</td>
<td>10-1</td>
</tr>
<tr>
<td>iso-C<sub>14</sub>:0</td>
<td>2-3</td>
<td>1-8</td>
<td>0-7</td>
</tr>
<tr>
<td>iso-C<sub>15</sub>:0</td>
<td>7-1</td>
<td>1-5</td>
<td>2-2</td>
</tr>
<tr>
<td>iso-C<sub>16</sub>:0</td>
<td>4-7</td>
<td>6-3</td>
<td>4-8</td>
</tr>
<tr>
<td>iso-C<sub>17</sub>:0</td>
<td>4-5</td>
<td>1-4</td>
<td>1-3</td>
</tr>
<tr>
<td>anteiso-C<sub>15</sub>:0</td>
<td>47-9</td>
<td>56-6</td>
<td>73-7</td>
</tr>
<tr>
<td>anteiso-C<sub>17</sub>:0</td>
<td>4-9</td>
<td>4-9</td>
<td>4-1</td>
</tr>
<tr>
<td>C<sub>16</sub>:<sub>1</sub>:<sub>ω</sub>11</td>
<td>8-1</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Species: 1, P. xylanilyticus sp. nov. XIL14^T; 2, P. illinoisensis (data from Shida et al., 1997b); 3, P. pabuli (Shida et al., 1997a); 4, P. amylyticus (Shida et al., 1997b). ND, Not detected.

