Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products

Franco Dellaglio,1 Giovanna E. Felis,1 Anna Castioni,1 Sandra Torriani1 and Jacques-Edouard Germond2

1Dipartimento Scientifico e Tecnologico, Facoltà di Scienze MM. FF. NN., Università degli Studi di Verona, Italy
2Nestlé Research Centre, Nestec Ltd, Lausanne, Switzerland

Four strains isolated from Indian dairy products and initially identified as Lactobacillus delbrueckii subsp. delbrueckii could not be assigned to a definite subspecies because molecular identification and phenotypic traits did not agree with those of recognized subspecies of L. delbrueckii. Hybridization of total DNA (78–86 % against type strains of the other three subspecies), AFLP and RAPD-PCR fingerprints, phylogenetic analysis based on 16S rRNA gene sequences and sequence analysis of two coding genes (recA and hsp60), together with phenotypic profiles, indicated that the four strains form a coherent cluster and represent a novel subspecies, for which the name Lactobacillus delbrueckii subsp. indicus subsp. nov. is proposed. The type strain is NCC725T (=LMG 22083T = DSM 15996T).

We report here the polyphasic analysis performed to define the taxonomic position of the four strains and describe a novel subspecies for L. delbrueckii.

The bacterial strains NCC725T, NCC665, NCC757 and NCC780 and the type strains of L. delbrueckii subsp. delbrueckii NCC621T (=ATCC 9649T = LMG 6412T), L. delbrueckii subsp. lactis NCC946T (=ATCC 12315T = LMG 7942T) and L. delbrueckii subsp. bulgaricus NCC641T (=ATCC 11842T = LMG 6901T) were grown in de Man–Rogosa–Sharpe (MRS) or acidified MRS (pH 5.4) medium at 37 °C.

Sugar metabolism was evaluated using the API-50CH detection kit. All strains tested fermented glucose, fructose and mannose. The ability to metabolize lactose distinguished the four strains from L. delbrueckii subsp. delbrueckii. These four strains can also be differentiated from L. delbrueckii subsp. lactis because they did not ferment both maltose and trehalose. Three of the four strains (except NCC757) fermented sucrose and not N-acetylglucosamine in contrast to type strains of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, respectively.
DNA for specific amplification and Southern blot analysis was extracted according to the methods of Marmur (1961) and Germond et al. (2003), respectively. Ribotyping and insertion sequence (IS) typing identification results showed a closer relationship of the four Indian strains to \(L. \text{delbrueckii} \) subsp. \(L. \text{delbrueckii} \) than to the other two recognized subspecies (Germond et al., 2003).

Subspecies-specific identification was performed by DNA amplification using a combination of primers designed on the proline iminopeptidase (pepIP) gene of \(L. \text{delbrueckii} \) subsp. \(\text{bulgaricus} \) (Torriani et al., 1999): this test allows us to differentiate between \(L. \text{delbrueckii} \) subsp. \(lactis \) and \(L. \text{delbrueckii} \) subsp. \(\text{bulgaricus} \) based on the size of the amplification product, while \(L. \text{delbrueckii} \) subsp. \(\text{delbrueckii} \) should show no amplification. The four Indian strains were all negative for the assay (data not shown), even if DNA was present at the appropriate concentration and was able to be amplified, as verified by RAPD-PCR analyses.

16S rRNA gene amplifications and sequences were obtained as reported by Germond et al. (2003). Sequence alignments were obtained using the CLUSTAL_X program (Thompson et al., 1997). Phylogenetic analysis was conducted using MEGA version 2.1 (Kumar et al., 2001): distance analysis (Tamura’s three-parameter distance) and neighbour-joining clustering were applied, as well as the maximum-parsimony method using default options. An analysis of the robustness of the trees was obtained by a bootstrap approach with 1000 replicates. A maximum-likelihood analysis was also performed with the program DNAML of the PHYLIP software package (Felsenstein, 1993). Accession numbers of the sequences included in the analysis are shown in Fig. A, available as supplementary material in IJSEM Online. The phylogenetic trees obtained strongly confirm that the new isolates should be classified within \(L. \text{delbrueckii} \) owing to their very low sequence divergence (identity of 99%); the distance matrix tree (Fig. A) is available as supplementary material in IJSEM Online.

16S rRNA gene sequence similarity is not sufficient to guarantee species identity (Fox et al., 1992). Protein-encoding genes are more variable; in particular, the recA gene has proved useful in the differentiation of closely related species with almost identical 16S rRNA gene sequences, including lactic acid bacteria species such as \(\text{Lactobacillus plantarum} \), \(\text{Lactobacillus paraplanatarum} \) and \(\text{Lactobacillus pentosus} \) (Torriani et al., 2001) or \(\text{Lactobacillus casei} \), \(\text{Lactobacillus rhamnosus} \) and \(\text{Lactobacillus zeae} \) (Felis et al., 2001). Therefore, part of the recA gene was amplified using the degenerate primers recEXT-f (5'-GGCTAT-GAAAACAAATTGAAAACAATATGNNARGG-3') and recEXT1-r (5'-TGTATAACCCGTTGAGCAACTTCRRTTAY-NNAC-3'). The reaction mixture (50 μl) contained 300 ng template DNA, 100 μM each dNTP, 1 μM each primer, 2 mM magnesium chloride, 5% (v/v) DMSO and 4 U Taq polymerase in a standard reaction buffer. After an initial denaturation of 5 min at 94°C, 30 cycles of 1 min at 94°C, 1 min at 50°C, 1 min at 72°C and a final extension at 72°C for 7 min were performed. Amplification products of the expected length of about 730 bp were obtained for all strains tested.

A partial sequence of the \(\text{hsp60} \) gene was also amplified using the degenerate primers cpn-f (5'-CTTGGGCCCAAAAGCMGNAAYGNTG-3') and cpn-r (5'-CCAAC-GTTTCCTGCAATTTITCNCKRTCA-3'). The reaction mixture and amplification programme were the same as those reported above, except that an annealing temperature of 55°C instead of 50°C was used. Amplicons of the expected length of about 1000 bp were obtained for all the strains. Sequencing reactions were performed at the Biomolecular Research Centre (BMR), University of Padua, Italy. The partial recA and \(\text{hsp60} \) sequences obtained for the strains were aligned as described for 16S rRNA gene sequences and showed very low divergence (identity of 99%).

RAPD analysis was carried out using three different primers: Coc1 (5'-AGCAAGCGTGG-3') (Cocconcelli et al., 1995), M13 (5'-GAGGTTGCGGTTCT-3') (Stendid et al., 1994) and D8635 (5'-GGCCGCCAAGGGAGCGAC-3') (Akopyanz et al., 1992), as described in the respective references except for the addition of 5% (v/v) DMSO in each reaction mixture. Pattern analyses of the amplification products, separated in agarose gels and stained with ethidium bromide, were performed with the GELCOMPAR software (Applied Maths) with the DICE coefficient and UPGMA as calculation and clustering options. AFLP® analysis of the four cultures was performed at the BCCM®/LMG Bacteria Collection (Laboratorium voor Microbiologie, Universiteit Gent, Belgium). Comparison of AFLP® (Fig. 1 and Fig. B, available as supplementary material in IJSEM Online) and RAPD profiles (Fig. C, available as supplementary material in IJSEM Online) demonstrated the genomic coherence of the four strains, their non-clonality and their close relationship with other strains of the species \(L. \text{delbrueckii} \).

DNA–DNA hybridization testing was performed among the type strains of each subspecies at the BCCM®/LMG Bacteria Collection. Hybridization values above 70%, usually considered the threshold for species delineation, were obtained with the type strains of the other three subspecies. DNA–DNA relatedness values were calculated on a minimum of four hybridizations and reciprocal reactions were also performed. Results are as follows, with the difference between reciprocal values shown in parentheses: strain NCC725T shared 78% (5), 79% (3) and 86% (15) relatedness with \(L. \text{delbrueckii} \) subsp. \(\text{delbrueckii} \) LMG 6412T, \(L. \text{delbrueckii} \) subsp. \(lactis \) LMG 7942T and \(L. \text{delbrueckii} \) subsp. \(\text{bulgaricus} \) LMG 6901T respectively. The level of hybridization between \(L. \text{delbrueckii} \) subsp. \(\text{delbrueckii} \) LMG 6412T and \(L. \text{delbrueckii} \) subsp. \(lactis \) LMG 7942T was 92% (6), and between \(L. \text{delbrueckii} \) subsp. \(\text{delbrueckii} \) LMG 6412T and \(L. \text{delbrueckii} \) subsp. \(\text{bulgaricus} \) LMG 6901T was 82% (18); genomic similarity between \(L. \text{delbrueckii} \) subsp. \(\text{lactis} \) LMG 7942T and \(L. \text{delbrueckii} \) subsp. \(\text{bulgaricus} \) LMG 6901T was 78% (4).
Lactobacillus delbrueckii subsp. bulgaricus LMG 6901T was 74% (11). With this technique, the mean standard deviation is estimated to be 14 units (Goris et al., 1998).

These data demonstrated that the four strains belong to the same taxon, even though, owing to the standard error of the technique, the relative order of the relationships could not be evaluated.

DNA–DNA hybridization values, and 16S rRNA, recA and hsp60 gene sequence analysis, confirm that the four strains constitute a homogeneous cluster belonging to the species *L. delbrueckii*. However, data obtained here and in Germond et al. (2003) suggest that they cannot be assigned to any of the three recognized subspecies of *L. delbrueckii*: (i) ARDRA (Germond et al., 2003) and subspecies-specific PCR data support their differentiation from *L. delbrueckii* subsp. *lactis* and *L. delbrueckii* subsp. *bulgaricus*; (ii) phenotypic traits distinguish them from *L. delbrueckii* subsp. *delbrueckii* (lactose fermentation) and from *L. delbrueckii* subsp. *lactis* (maltose and trehalose metabolism) (see Table A, available as supplementary material in IJSEM Online); (iii) lactose degradation is constitutive in the four strains but is regulated in *L. delbrueckii* subsp. *lactis* (Lapierre et al., 2002); and (iv) *Lactobacillus delbrueckii* subsp. *bulgaricus* is also able constitutively to degrade lactose but the four strains are negative for the specific PCR amplification for β-galactosidase (Germond et al., 2003). This evidence suggests that the four strains possess a unique genetic equipment for lactose degradation, which differs from that of the other recognized subspecies.

Characterization of this equipment is beyond the scope of the present study, but it does provide proof that the four strains represent a separate subspecies. Moreover, molecular analysis, such as AFLP[®] and RAPD-PCR, indicated that the four strains represent a genomic, coherent, non-clonal distinct group within the species *L. delbrueckii*. The data presented highlight several peculiarities to the four strains (probably a result of their geographical isolation) that fulfil the requirements for the description of a new subspecies (Rossello-Mora & Amann, 2001) within *L. delbrueckii*. This description may avoid future incorrect identification of ‘atypical’ isolates of *L. delbrueckii* species. The name *Lactobacillus delbrueckii* subsp. *indicus* subsp. nov. is proposed for these strains. Owing to the high overall similarity with the other strains of the species, an emended description of *L. delbrueckii* is not required, except that the species now comprises four subspecies.

Description of Lactobacillus delbrueckii subsp. indicus subsp. nov.

Lactobacillus delbrueckii subsp. *indicus* (in’di.cus. L. masc. adj. *indicus* from India, referring to the geographical origin of the strains).

Cells are Gram-positive, catalase-negative rods with rounded ends, generally 0.5–0.8 μm by 2–9 μm, occurring singly, in pairs and in short chains. Non-motile. Homofermentative, produces D-lactic acid exclusively. Growth occurs at 45°C but not at 15°C. Glucose, fructose, mannose and lactose are fermented by all strains, while fermentation of sucrose and N-acetylglucosamine is more variable. Glycerol, erythritol, arabinose, ribose, xylose, adonitol, methyl β-D-xyloside, galactose, rhamnose, dulcitol, inositol, mannitol, sorbitol, methyl α-D-mannoside, methyl α-D-glucoside, amygdalin, arbutin, aesculin, salicin, cellobiose, maltose, melibiose, trehalose, inulin, melezitose, raffinose, starch, glycojen, xylitol, gentiobiose, D-turanose, D-lyxose, D-tagatose, fucose, arabinol, glucosate, 2-ketogluconate and 5-ketogluconate are not fermented. Arginine is not deaminated. Growth is observed in MRS plus 2–5% (w/v) NaCl, except for strain NCC780; none of the strains grows in MRS plus 5% (w/v) NaCl. All the strains grow in MRS at pH 3, 4 and 5, but not at pH 7-8. Metachromatic granules are often observed after methylene blue staining.

The type strain, NCC725^T (=LMG 22083^T = DSM 15996^T),
was isolated from a traditional Indian dairy fermented (type Dahi) product.

Acknowledgements

Ms Valérie Vaccarello De Icco is acknowledged for isolation of the bacterial strains from Indian dairy products.

References

