Lactobacillus suntoryeus sp. nov., isolated from malt whisky distilleries

Elise Cachat and Fergus G. Priest

International Centre for Brewing and Distilling, School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Eight strains of Lactobacillus with identical partial 16S rRNA gene sequences and similar randomly amplified polymorphic DNA patterns were isolated from fermentation samples from Japanese and Scottish malt whisky distilleries. Phylogenetic analysis of almost complete 16S rRNA gene sequences from three representative strains (two from Japan, one from Scotland) placed them in the genus Lactobacillus as members of the Lactobacillus acidophilus group. Lactobacillus helveticus and Lactobacillus gallinarum were the most closely related species, with 16S rRNA gene similarities of 99.3 and 98.1 %, respectively. A similar phylogeny was derived from partial sequences of elongation factor Tu (tuf) genes in which the alleles from the three distillery isolates were identical and shared 99.0 % similarity with L. helveticus and L. gallinarum tuf genes. S-layer (s/lp) gene sequences suggested different relationships among the strains and the distillery isolates no longer formed a monophyletic group. The alleles from the Japanese and Scottish strains shared only 54 % similarity. Chromosomal DNA from the distillery strains gave DNA–DNA hybridization values between 79 and 100 % but showed less than 43 and 22 % reassociation with L. helveticus and L. gallinarum DNA, respectively. The name Lactobacillus suntoryeus sp. nov. is proposed for this novel taxon; the type strain is strain SA\(^T\) (= LMG 22464\(^T\) = NCIMB 14005\(^T\)).

Lactic acid bacteria comprise a natural component of the microflora of malt whisky fermentation (Simpson et al., 2001; van Beek & Priest, 2002). In well-maintained distilleries their numbers are low at the beginning of the fermentation, but, once the yeast has completed the alcoholic fermentation, they grow prolifically during the ‘late lactic fermentation’ and are considered to confer positive flavour notes to the spirit (Takatani & Ikemoto, 2004). The most common species encountered are Lactobacillus brevis, Lactobacillus fermentum and Lactobacillus paracasei, but numerous other Lactobacillus species, lactococci, leuconostocs and weissellas have been detected, particularly in the early stages of the fermentation, when the alcohol concentration is relatively low (van Beek & Priest, 2003).

Analysis of Scotch whisky fermentations using denaturing gradient gel electrophoresis revealed an uncultured bacterium in the late stages of fermentation that was closely related to a bacterium isolated from a Japanese malt whisky fermentation and referred to as strain Y10. Phylogenetic studies based on the 16S rRNA gene sequence of strain Y10 suggested that this bacterium was a member of the Lactobacillus acidophilus group (van Beek & Priest, 2002). This group comprises L. acidophilus sensu stricto, Lactobacillus amylovorus, Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus helveticus and Lactobacillus johnsonii (Johnson et al., 1980; Fujisawa et al., 1992; Gancheva et al., 1999), with three relatively recent additions: Lactobacillus amylyticus, isolated from malt and beer wort (Bohak et al., 1998), Lactobacillus iners, associated with human sources (Falsen et al., 1999) and Lactobacillus kitasatonis, from chicken intestines (Mukai et al., 2003). In this study, we have investigated the phylogenetic relationships between the Japanese and Scottish isolates from whisky fermentations and shown that they constitute a distinct taxon within the L. acidophilus lineage, for which we propose the name Lactobacillus suntoryeus sp. nov.

Eight strains of lactic acid bacteria were isolated from four different distilleries in Japan and Scotland. The Japanese strains were isolated on three occasions: strains Y10, H8 and W6 in 1989, strains YD, HD and PD in 1993 and strain SA\(^T\) in 1999. Strains Y10, YD and SA\(^T\) were isolated from the Yamazaki distillery, strains H8, W6 and HD from the Hakushu distillery and PD from the Suntory pilot plant. Strain M4 was isolated from the Glenkinchie distillery in southern Scotland in 2002. For isolation of strain M4, a
fermentation sample was diluted in MRS broth, plated onto MRS agar (Oxoid) supplemented with maltose (10 g l\(^{-1}\)), brain heart infusion broth (Oxoid; 10 g l\(^{-1}\)) and cycloheximide (100 μg ml\(^{-1}\)) and incubated anaerobically for 48 h at 37 °C. Isolated colonies were purified on the same medium by streak plating three times and a representative isolate was stored at −70 °C in MRS broth containing 20% (v/v) glycerol as strain M4. Distillery isolates were routinely cultivated on supplemented MRS agar or broth (without cycloheximide) at 37 °C anaerobically. The main reason why these organisms had not been recovered in earlier studies (e.g. Makanjuola & Springham, 1984; Simpson et al., 2001) was probably due to their growth requirements; they grow poorly, if at all, unless MRS-based media are supplemented with brain heart infusion or similar. Reference strains \(L.\ gallinarum\) DSM 10532\(^T\) and \(L.\ helveticus\) NCIMB 11971\(^T\) were obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) and the National Collection of Industrial and Marine Bacteria (NCIMB), respectively, and cultured in MRS agar or broth at 37 °C.

Chromosomal DNA was isolated using the PUREGENE DNA Isolation kit (Gentra Systems) from cultures grown in supplemented MRS broth for 24 h at 37 °C. The manufacturer’s protocol for DNA isolation from Gram-positive bacteria was modified by the addition of 140 U mutanolysin (Sigma) ml\(^{-1}\) and 50 μg lysozyme (Sigma) ml\(^{-1}\) to the lytic enzyme solution and the suspension was incubated at 37 °C for 45 min to effect lysis. Larger amounts of DNA were prepared by phenol extraction as described previously (Simpson et al., 2001). DNA concentration was determined by the diphenylamine method (Burton, 1968). Randomly amplified polymorphic DNA (RAPD) patterns were generated as described previously (Simpson et al., 2001).

Fragments of genes for sequence determination were amplified by PCR using the following reaction mixture (50 μl): 5 μl DyNAzyme EXT buffer (Finnzymes), 1 μl 10 mM dNTPs, 2 μl 50 mM MgCl\(_2\), 10 pmol each primer, 100 ng DNA and 1 U DyNAzyme EXT polymerase. Amplifications were performed with the following thermal cycle: 95 °C for 5 min, 30 cycles of 95 °C for 10 s, an annealing step of 1 min (temperature specified below) and elongation at 72 °C for 2 min, with a final elongation step at 72 °C for 10 min. 16S rRNA genes were amplified using universal primers \(27f\) (5′-AGAGTTTGTATCMTGGCTCAG-3′) and \(1492r\) (5′-TACGCGYTACCTTGTTACGACTT-3′), with an annealing temperature of 56 °C. \(tuf\) genes were amplified using primers \(tuf-01f\) (5′-GTGTTGCTGCAACTGATGG-3′) and \(tuf-02r\) (5′-CCATTCTAGTACCTTGTCG-3′), with an annealing temperature of 56 °C. These were designed from an alignment of \(tuf\) gene sequences from \(L.\ acidophilus\), \(L.\ amylovorans\), \(L.\ crispatus\), \(L.\ gallinarum\) and \(L.\ helveticus\) and enabled amplification of a region from nt 19 to 760 (numbering according to the \(L.\ acidophilus\) ATCC 4356\(^T\) gene sequence). S-layer genes were amplified using various primers with corresponding annealing temperatures. The initial primers \(S01-f\) (5′-AGAATYGTT-AGCGYTGCTGC-3′) and \(S02-r\) (5′-CGTTGTGCTTCA-AAGTACGC-3′) at 50 °C enabled partial sequencing of the 5′ end of the PCR products from all four strains (three distillery isolates and \(L.\ gallinarum\) DSM 10532\(^T\)). New primers were then prepared for strains \(S\) and \(Y\). \(S3-f\) (5′-GACCACATGAAAGAAATT-3′) and \(Jap3-S04-r\) (5′-CAGCATTACAAACGACATA-3′) at 50 °C; for strain M4, \(S01-f\) and \(M4-S04-r\) (5′-TGCTGACGGTAGTAGATGC-3′) at 50 °C; and for \(L.\ gallinarum\) DSM 10532\(^T\), \(S01-f\) and galli-\(S04-r\) (5′-GTTCATGCTTAAAGAGCTG-3′) at 56 °C, as conserved regions suitable for all strains were not available. This resulted in fragments of 848 bp (nt 49–896) for strains \(Y\) and \(S\), 711 bp (nt 70–780) for strain M4 and 808 bp (nt 70–877) for \(L.\ gallinarum\) DSM 10532\(^T\), all based on \(L.\ acidophilus\) ATCC 4356\(^T\) gene sequence numbering. PCR products were purified by PEG\(_{8000}\) precipitation and sequenced using the ABI Prism Big Dye Terminator cycle sequencing ready reaction kit and the ABI 310 capillary sequencing system (Applied Biosystems). Due to the presence of multiple copies of the S-layer gene in \(L.\ gallinarum\) DSM 10532\(^T\), PCR products were cloned in \(Escherichia coli\) with the TOPO TA Cloning kit (Invitrogen) and sequenced after PCR amplification with primers \(S01-f\) and galli-\(S04-r\) as described above. Alignments were prepared with CLUSTAL X and phylogenetic trees were constructed using PAUP 4 (http://paup.csit.fsu.edu/).

For DNA–DNA hybridizations, probe DNAs were labelled with digoxigenin using random-priming and the DIG High Prime DNA Labelling and Detection Starter kit II (Roche). DNA (1 μg) was immobilized on nylon membranes, hybridized at 42 °C and washed at high stringency (65 °C) as described previously (Simpson et al., 2001). Labelled probe was detected by chemiluminescence and quantified with ImageMaster TotalLab software (Amersham Pharmacia Biotech).

Partial 16S rRNA gene sequences (around 300 bp from the 5′ end) of the eight strains were identical. RAPD analysis provided further evidence that the distillery isolates were closely related. RAPD patterns are highly discriminatory for members of the \(L.\ acidophilus\) group and can be used to distinguish strains of the various species, as well as to provide discrimination within species (Du Plessis & Dicks, 1995; Gancheva et al., 1999; Ventura & Zink, 2002). The identical patterns generated from strains \(S\) and \(Y\) and the very similar pattern from strain M4 were consistent with the isolates belonging to a single species (see Supplementary Fig. A available in IJSEM Online).

The virtually complete 16S rRNA gene sequences of strains \(S\), \(Y\) and M4 and of \(L.\ helveticus\) NCIMB 11971\(^T\) were determined and a phylogenetic tree was constructed using 16S rRNA gene sequences retrieved from GenBank for other members of the \(L.\ acidophilus\) group and \(L.\ brevis\). The three distillery isolates had identical 16S rRNA gene sequences and the tree topology confirmed that they were members of the \(L.\ acidophilus\) group (Fig. 1). The 16S rRNA
genes of these strains shared 99.3 and 98.1% sequence similarity with *L. helveticus* and *L. gallinarum* 16S rRNA genes, respectively.

To differentiate further between the distillery isolates and their relatives, we analysed two protein-coding genes, the *tuf* gene, which encodes the translational elongation factor Tu, and the *slp* gene, which encodes a surface-layer protein. A neighbour-joining tree based on partial sequences of 681 bp of the *tuf* genes fully supported the tree topology obtained with 16S rRNA gene sequences. The three distillery isolates had identical *tuf* alleles and were again most closely related to *L. helveticus* and *L. gallinarum* (see Supplementary Fig. B available in IJSEM Online), confirming the value of this gene as a reliable indicator of phylogenetic relationships within this group of bacteria (Chavagnat et al., 2002).

Lactobacilli of the *L. acidophilus* group, apart from *L. johnsonii* and *L. gasseri*, possess a highly variable surface-layer protein (Boot et al., 1996) that has been used as a taxonomic tool for identification of *L. crispatus* (Horie et al., 2002). We amplified and sequenced partial *slp* genes from the three distillery isolates and *L. gallinarum* DSM 10532T. The topology of the neighbour-joining tree constructed from these sequences and homologous sequences from GenBank (Fig. 2) differed from that based on 16S rRNA and *tuf* genes, and the distillery isolates did not form a monophyletic group. Indeed, the allele of strain M4 shared very low sequence similarity (approx. 54%) with those of the Japanese strains. Surface-protein genes are subject to greater selective pressure and change more rapidly than housekeeping genes such as *tuf*, particularly in pathogenic bacteria exposed to immune responses (van Loo et al., 2002). The inconsistencies between the *slp* tree and those derived from 16S rRNA and *tuf* genes indicated that the *slp* gene may not provide an accurate picture of the phylogenetic relationships of these organisms and may be subject to lateral transfer.

Since the 16S rRNA and *tuf* gene sequences showed that the distillery isolates were most closely related to *L. gallinarum* and *L. helveticus*, we established the status of these strains by DNA hybridization. Probe DNA from strains SA2T and M4 gave DNA–DNA hybridization values between 79 and 100% with each other and with DNA from strain Y10. Hybridization between the two probe DNAs and DNA from *L. gallinarum* DSM 10532T and *L. helveticus* NCIMB 11971T was less than 43%, establishing the distillery isolates as representatives of a novel species.

The three distillery strains SA2T, Y10 and M4 were all Gram-positive, catalase-negative homofermentative rods. After anaerobic incubation in modified MRS broth for 24 h, SA2T cells were rods approximately 10 μm long (ranging from 2 to 30 μm), M4 cells were smaller (from 2 to 15 μm) and Y10 cells formed long filaments (100% with each other) and with DNA from strain Y10. The carbohydrate fermentation patterns of the three distillery strains and *L. gallinarum* DSM 10532T were determined using the API 50 CHL system (bioMérieux). The three distillery strains had similar profiles except for the production of acid from galactose and starch, which was positive for strain M4 and negative for strains SA2T and Y10 (Table 1). The phylogenetic analyses, DNA hybridization results and distinguishing phenotypic characteristics (Table 1) confirmed these bacteria as members of a novel species, for which we propose the name *Lactobacillus suntoryeus* sp. nov. in recognition of the first isolation of these bacteria.

Description of *Lactobacillus suntoryeus* sp. nov.

Lactobacillus suntoryeus (sun.to.ry.e’us. N.L. masc. adj. suntoryeus occurring in Suntory malt whisky fermentations).
Table 1. Differential carbohydrate fermentation reactions of distillery isolates compared with related strains of the L. acidophilus group

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Galactose</td>
<td>−</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gentiobiose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Glycogen</td>
<td>−</td>
<td>−</td>
<td>V</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Raffinose</td>
<td>−</td>
<td>−</td>
<td>(−)</td>
<td>V</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Starch</td>
<td>−</td>
<td>+</td>
<td>(−)</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Trehalose</td>
<td>−</td>
<td>−</td>
<td>(+)</td>
<td>V</td>
<td>−</td>
<td>V</td>
</tr>
</tbody>
</table>

Gram-positive rods varying in length from 2 μm to long filaments. Non-motile, non-sporulating and catalase negative. After 48 h incubation on MRS agar (supplemented with maltose and brain heart infusion broth), colonies are circular, shiny, creamy white in colour and 2–5 mm in diameter. Growth is poor in unsupplemented MRS medium. Growth occurs at 37 and 45 °C, but not at 15 °C. Strictly homofermentative. Acid is produced from N-acetyl glucosamine, amygdalin, arbutin, cellobiose, aesculin, fructose, gentiobiose, glucose, maltool, mannose, salicin, sucrose and in some cases from galactose and starch (type strain negative). Adonitol, D-arabinose, L-arabinose, D- and L-arabitol, dulcitol, erythritol, D- and L-fucose, glucuronate, glycerol, inositol, inulin, 2-ketogluconate, 5-ketogluconate, D-lyxose, mannitol, melezitose, methyl α-D-glucoside, methyl α-D-mannoside, methyl β-D-xylloside, rhamnose, ribose, sorbitol, sorbose, D-tagatose, D-turanose, xylitol and D- and L-xylitol are not fermented. Strains have been isolated from whisky fermentations.

The type strain is strain SA T (=LMG 22464 T = NCIMB 14005 T).

Acknowledgements

The authors thank H. Ikemoto of Suntory Ltd for the provision of strains and Suntory Ltd for funding this work. We are grateful to the owners and staff of Glenkinchie Distillery for enabling our sampling. We also thank Professor Hans G. Trüper for advice in formulation of the name.

References

