Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples

Tom Coenye,1 Elke Vanlaere,1 Emly Samyn,1 Enevold Falsen,2 Peter Larsson2 and Peter Vandamme1

1Laboratorium voor Microbiologie, Universiteit Gent, Gent, Belgium
2Culture Collection, Department of Clinical Bacteriology, University of Göteborg, Göteborg, Sweden

A polyphasic taxonomic study of 14 isolates recovered from various human and veterinary clinical samples was performed. Phenotypically these isolates shared several characteristics with members of the Alcaligenaceae and related genera. Random amplified polymorphic DNA fingerprinting and whole-cell protein analysis suggested the presence of multiple genomic groups, which was confirmed by DNA–DNA hybridization experiments. 16S rRNA gene sequence analysis indicated that these isolates were related to the genera Pelistega, Taylorella, Oligella, Pigmentiphaga, Alcaligenes, Kerstersia, Achromobacter and Bordetella and belonged to the family Alcaligenaceae. Based on the results of the present study the organisms were classified in a novel genus, Advenella gen. nov. This genus comprises one named species, Advenella incenata sp. nov. (type strain LMG 22250T = CCUG 45225T) and five currently unnamed genomic species. The DNA G+C content of members of the novel genus Advenella is between 54.0 and 57.7 mol%.

INTRODUCTION

The family Alcaligenaceae belongs to the β-subclass of the Proteobacteria and was proposed by De Ley et al. (1986) to accommodate the genera Bordetella and Alcaligenes. Subsequently, the genera Achromobacter, Pigmentiphaga and Kerstersia were also assigned to the Alcaligenaceae (Yabuuchi et al., 1998; Bluemel et al., 2001; Coenye et al., 2003b). The genera Oligella, Taylorella, Pelistega and Brackiella are closely related to the Alcaligenaceae but have not been formally assigned to this family (Rossau et al., 1987; Vandamme et al., 1998; Willems et al., 2002). Members of most of the above-mentioned genera have been isolated from various human and veterinary clinical samples, including respiratory secretions of cystic fibrosis (CF) patients; however, some (e.g. Pigmentiphaga kullae) appear to be truly environmental organisms, which have not been implicated in human or animal diseases.

We performed a polyphasic taxonomic study to elucidate the taxonomic position of 14 isolates recovered from various human and veterinary clinical samples. Phenotypically these organisms shared some characteristics with members of the Alcaligenaceae and related genera, but identification to the species level proved to be impossible using conventional biochemical analysis.

METHODS

Bacterial strains and growth conditions. The 14 strains used in this study are listed in Table 1. All strains were grown aerobically on tryptcase soy agar (TSA) (BBL) at 37°C unless otherwise indicated.

Randomly amplified polymorphic DNA (RAPD) fingerprinting. DNA was prepared by heating one or two colonies at 95°C for 15 min in 20 µl lysis buffer containing 0.25% (w/v) SDS and 0.05 M NaOH. Following lysis, 180 µl distilled water was added to the lystate. Isolate genotyping by means of RAPD fingerprinting and numerical analysis were performed as described by Coenye et al. (2002).

SDS-PAGE of whole-cell proteins. Strains were grown on TSA for 48 h at 37°C. Preparation of whole-cell proteins and SDS-PAGE were performed as described by Pot et al. (1994). Densitometric analysis, normalization and interpolation of the protein profiles, and
numerical analysis using Pearson’s product-moment correlation coefficient were performed using the GELCOMPAR 4.2 software package (Applied Maths).

16S RNA gene sequencing. DNA was prepared as described above. The sequence of the 16S RNA gene of strains LMG 22250T, R-16599, R-20008, R-18191 and R-20007 was determined as described by Coenye et al. (1999). Phylogenetic analyses and bootstrap analysis (1000 replicates) were performed using the KODON 2.0 software package (Applied Maths); a phylogenetic tree was constructed using the neighbour-joining method (Saitou & Nei, 1987).

Preparation of high-molecular-mass DNA and DNA–DNA hybridization experiments. High-molecular-mass DNA was prepared as described by Pitcher et al. (1989), and DNA–DNA hybridizations were performed with photobiotin-labelled probes in microplate wells as described by Ezaki et al. (1989) using an HTS7000 Bio Assay Reader (Perkin-Elmer) for the fluorescence measurements. The hybridization temperature was 45°C. Reciprocal experiments were performed for every pair of strains.

Determination of DNA base composition. DNA (prepared as described above) was enzymically degraded into nucleosides as described by Mesbah et al. (1989). The nucleoside mixture obtained was then separated by HPLC using a Waters SymmetryShield C8 column maintained at 37°C. The solvent was 0-02 M NH₄H₂PO₄ (pH 4.0) with 1-5% acetonitrile. The detector used was a Waters model 484 UV-VIS absorbance detector set at 270 nm. Non-methylated lambda phage DNA (Sigma) was used as the calibration reference.

Fatty acid methyl ester analysis. After an incubation period of 24 h at 28°C, a loopful of well-grown cells was harvested and fatty acid methyl esters were prepared as described by Vandamme et al. (1992); these were then separated and identified using the Sherlock Microbial Identification System (version 3.0; MIDI Inc.).

Phenotypic characterization. Classical phenotypic tests were performed as described by Vandamme et al. (1993). API20NE and APIZYM tests were performed according to the recommendations of the manufacturer (bioMérieux).

RESULTS AND DISCUSSION

Phylogenetic position and structure

Reproducibility of RAPD fingerprinting was checked by generating RAPD patterns in duplicate. The level of correlation between these patterns was more than 87% (data not shown). After numerical analysis of the RAPD patterns, eight and two isolates grouped together in clusters I and II, respectively, whereas the other isolates occupied separate positions in the dendrogram (Fig. 1). Reproducibility of SDS-PAGE of whole-cell proteins was checked by preparing protein extracts in duplicate. The level of correlation between these patterns was more than 93% (data not shown). Visual comparison of the protein profiles confirmed the grouping as observed following numerical analysis of the RAPD patterns (shown in Supplementary Fig. A in IJSEM Online). 16S rRNA gene sequences of five isolates were determined and compared with available 16S rRNA gene sequences of other β-Proteobacteria (Fig. 2). The sequences of these five isolates were very similar to each other (similarities ranging from 99-9 to 96-5%). Similarity levels to representatives of the genera *Pelishega* (95-4–94-6%), *Taylorella* (95-9–92-9%), *Oligella* (93-8–89-7%), *Brackiella* (94-8–91-6%), *Pigmentiphaga* (96-3–94-3%), *Alcaligenes* (95-8–92-8%), *Kersteria* (96-6–93-5%), *Achromobacter* (95-7–92-6%) and *Bordetella* (96-2–92-9%) were generally lower. Bootstrap analysis indicated that strains LMG 22250T, R-16599, R-20008, R-18191 and R-2007 formed a stable phylogenetic group (bootstrap value was 100%). DNA was prepared from strains LMG 22250T, R-12612, R-18191, R-20008 and R-2007. The levels of DNA–DNA relatedness are given in Table 2. The G+C content of the isolates was between 53-5 and 58-0 mol%. The cellular fatty acid

Table 1. List of strains studied

<table>
<thead>
<tr>
<th>Strain</th>
<th>Other strain designation</th>
<th>Depositor</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advenella incenata gen. nov., sp. nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMG 22250T</td>
<td>CCUG 45225</td>
<td>PHLS Göteborg</td>
<td>Human sputum, 69-year-old woman (Sweden)</td>
</tr>
<tr>
<td>R-12612, R-20001</td>
<td>CCUG 46453</td>
<td>J. Gigi</td>
<td>CF patient 1 (Belgium)</td>
</tr>
<tr>
<td>R-16574, R-20002</td>
<td>CCUG 46454</td>
<td>H. Franckx</td>
<td>CF patient 2 (Belgium)</td>
</tr>
<tr>
<td>R-16599</td>
<td></td>
<td>J. Van Eldere</td>
<td>CF patient 2 (Belgium)</td>
</tr>
<tr>
<td>LMG 8437</td>
<td>CCUG 22619</td>
<td>B. Bochner</td>
<td></td>
</tr>
<tr>
<td>LMG 8439</td>
<td>CCUG 22621</td>
<td>B. Bochner</td>
<td></td>
</tr>
<tr>
<td>R-20004</td>
<td>CCUG 12437</td>
<td>A. Malmborg</td>
<td>Contaminated horse blood (Göteborg, Sweden)</td>
</tr>
<tr>
<td>R-1086</td>
<td></td>
<td>G. Funke</td>
<td>Human blood (Switzerland, 1996)</td>
</tr>
<tr>
<td>Advenella sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMG 16602</td>
<td>CCUG 30713</td>
<td>R. Priwin</td>
<td>Human sputum, 16-year-old male (Göteborg, Sweden)</td>
</tr>
<tr>
<td>R-18191</td>
<td>CCUG 30155</td>
<td>R. Priwin</td>
<td>Human sputum, 16-year-old male (Göteborg, Sweden)</td>
</tr>
<tr>
<td>R-20008</td>
<td>CCUG 39400</td>
<td>A. Nordius</td>
<td>Human wound, 21-year-old male (Skövde, Sweden)</td>
</tr>
<tr>
<td>R-20007</td>
<td>CCUG 46954</td>
<td>PHLS Göteborg</td>
<td>Human sputum, 12-year-old male with CF (Göteborg, Sweden)</td>
</tr>
<tr>
<td>R-20003</td>
<td>CCUG 17517</td>
<td>PHLS Göteborg</td>
<td>Air in piggery (Sweden)</td>
</tr>
<tr>
<td>R-20005</td>
<td>CCUG 24018</td>
<td>U. B. Stolt</td>
<td>Human wound, 67-year-old male (Uppsala, Sweden)</td>
</tr>
</tbody>
</table>
The composition of all 14 isolates was also determined (shown in Supplementary Table A in IJSEM Online). The 14 isolates formed a homogeneous group: the predominant fatty acids were 16:0, 18:1\(_{v7c}\), summed feature 2 (SF2) (comprising 14:0 3-OH, 16:1 iso I, an unidentified fatty acid with equivalent chain length of 10–928 or 12:0 ALDE, or any combination of these fatty acids) and summed feature 3 (SF3) (comprising 16:1\(_{v7c}\) and/or 15:0 iso 2-OH). All 14 isolates examined showed oxidase, catalase and leucine arylamidase, but no amylase, lysine decarboxylase, ornithine decarboxylase, arginine dihydrolase, gelatinase, DNase, C\(_{14}\)-lipase, valine arylamidase, trypsin, chymotrypsin, x-galactosidase, \(\beta\)-galactosidase, \(\beta\)-glucuronidase, x-glucosidase, \(\beta\)-glucosidase, N-acetyl-\(\beta\)-glucosidase, x-mannosidase or x-fucosidase activity. Haemolysis, hydrolysis of Tween 80 and aesculine, denitrification, indole production and production of acid or H\(_2\)S from triple-sugar–iron agar were not observed. Growth was observed at 30 and 37 °C on Drigalski agar (Vahlne, 1945) and at NaCl concentrations of 0–3%. Growth was not observed on acetamide or on oxidation–fermentation (OF) medium supplemented with maltose, adonitol or D-fructose. No assimilation of DL-norleucine, phenylacetate, sucrose, mannose or maltose was observed. All strains examined assimilated citrate and DL-lactate. The following characteristics were strain dependent: growth at 42 °C, growth on OF medium supplemented with D-glucose or D-xylene, growth on cetrimide agar, growth with 10% lactose, growth with 4–5 and 6–0% NaCl, reduction of nitrate and nitrite, assimilation of D-glucose, trehalose, L-arginine, D-mannitol, N-acetylgalactosamine, L-arabinose, L-malate and caprate and urease, alkaline and acid phosphatase, C\(_4\)-lipase, C\(_8\)-lipase, cysteine arylamidase and phosphoamidase activities.

Comparative 16S rRNA gene sequence analysis indicated that isolates LMG 22250\(^T\), R-16599, R-20008, R-18191 and R-20007 formed a single and stable phylogenetic lineage. The relatively low similarity to their closest relatives and the stability of the cluster (as indicated by a bootstrap value of 100%) warrant the inclusion of these isolates in a novel genus, for which we propose the name *Advenella*. Analysis of RAPD patterns and protein profiles suggested the presence of multiple species, sharing more than 97% 16S rRNA gene sequence similarity. In order to clarify the relationships between these isolates, DNA–DNA hybridization was performed (Stackebrandt & Goebel, 1994). The results of

![Fig. 1. Dendrogram derived from UPGMA linkage of correlation coefficients between the RAPD patterns of the strains studied. The correlation coefficient is expressed as percentage similarity for convenience.](http://ijs.sgmjournals.org)

![Fig. 2. Phylogenetic tree (based on 16S rRNA gene sequences) showing the position of *Advenella* gen. nov. Bar, 10% sequence dissimilarity.](http://ijs.sgmjournals.org)
these hybridizations, combined with the results of the RAPD fingerprinting and the protein analysis, showed (i) that isolates LMG 22250T, R-12612, R-16599, R-16574, LMG 8437, LMG 8439, R-1086 and R-20004 comprise a single species, and (ii) that the other isolates listed in Table 1 represent several additional genomic species. We propose the formal name *Advenella incenata* gen. nov., sp. nov. for the eight isolates that grouped together in RAPD cluster I. Pending the availability of similar isolates, cluster II isolates LMG 16602 and R-18191 and isolates R-20008, R-20007, R-20003 and R-20005 are classified as *Advenella* spp.

Of the eight cluster I isolates, three (R-12612, R-16599 and R-16574) have virtually identical RAPD patterns. These isolates were recovered from two different CF patients, attending different treatment centres in Belgium. The two cluster II isolates (LMG 16602 and R-18191) also had similar RAPD patterns. These isolates were recovered from a single Swedish CF patient on different occasions. Although we did not perform detailed epidemiological investigations, our data suggest that these strains might be capable of prolonged infection.

Identification of members of the genus Advenella

Based on a limited number of conventional phenotypic tests, all the genomic species described here (including *A. incenata*) can be separated from each other (Table 3). However, members of the genus *Advenella* cannot easily be separated from members of the genera *Pelistega*, *Taylorella*, *Oligella*, *Brackiella*, *Alcaligenes*, *Achromobacter*, *Kerstersia*, *Bordetella* and *Pigmentiphaga*. A number of phenotypic characteristics useful for differentiation of the genus *Advenella* from related genera is shown in Table 4. In addition, in contrast to *Pelistega* species, *Brackiella* and several *Bordetella* species, *Advenella* spp. isolates grow well on standard media under aerobic conditions, without the need for addition of blood or specific growth factors. *Advenella* species can also be separated from related genera by means of whole-cell protein and fatty acid analysis. Finally, the DNA G+C content of members of the genus *Advenella* is considerably different from that of several related taxa (Table 4).

Table 2. DNA G+C content and levels of DNA–DNA relatedness of all strains examined

DNA–DNA binding values represent means of reciprocal experiments. ND, Not determined.

<table>
<thead>
<tr>
<th>Strain</th>
<th>G+C content (mol%)</th>
<th>DNA binding values (%) with strain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1. Advenella incenata</td>
<td>54:2</td>
<td>100</td>
</tr>
<tr>
<td>LMG 22250T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Advenella incenata</td>
<td>54:5</td>
<td></td>
</tr>
<tr>
<td>R-12612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Advenella sp. R-18191</td>
<td>54:0</td>
<td></td>
</tr>
<tr>
<td>4. Advenella sp. R-20008</td>
<td>53:6</td>
<td></td>
</tr>
<tr>
<td>5. Advenella sp. R-20007</td>
<td>57:7</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Phenotypic characteristics useful in the differentiation of genomic groups within the genus Advenella

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth on cetrimide</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Reduction of: Nitrate</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Reduction of: Nitrite</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trehalose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Arginine</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Mannitol</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>N-Acetylglucomamine</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>L-Malate</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Caprate</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Alkaline phosphatase activity</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>
Table 4. Characteristics useful in the differentiation of the genus Advenella from related genera

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth in 3% NaCl</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td>+</td>
<td>V</td>
<td>-</td>
<td>V</td>
<td>ND</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phenylacetate</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>-</td>
</tr>
</tbody>
</table>

Description of Advenella incenata sp. nov.

Advenella incenata (in.ce.na’ta. L. fem. adj. incenata that has not dined, fasting, referring to the fact that this organism shows little biochemical activity).

The description is the same as for the genus. In addition, it does not reduce nitrate or nitrite, does not assimilate trehalose, D-arginine, D-mannitol, Achromobacter denitrificans, which radioisopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 36, 405–414.

Acknowledgements

T.C. and P.V. are indebted to the Fund for Scientific Research – Flanders (Belgium) for a position as postdoctoral fellow and research grants, respectively. T.C. also acknowledges support from the Belgian Federal Government (Federal Office for Scientific, Technical and Cultural Affairs). We wish to thank all depositors of strains, the staff at CCUG and the staff at the PHLS DNA Laboratory.

References

