Streptomyces glauciniger sp. nov., a novel mesophilic streptomycete isolated from soil in south China

Ying Huang,1 Wei Li,1 Liming Wang,1 Benjamin Lanoot,2 Marc Vancanneyt,2 Carlos Rodriguez,3 Zhiheng Liu,1 Jean Swings2 and Michael Goodfellow3

Correspondence
Ying Huang
huangy@im.ac.cn
1State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
2BCCM/LMG Bacteria Collection, Department of Biochemistry, Physiology and Microbiology, University Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
3School of Biology, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

A polyphasic study was undertaken to establish the taxonomic status of a soil isolate. The organism, strain FXJ14T, was found to have chemical and morphological properties characteristic of streptomycetes. Phylogenetic analyses based on an almost complete 16S rRNA gene sequence of the strain and on the 120 nt variable γ-region of the 16S rRNA molecule showed that it formed a distinct phyletic line within the range of variation encompassed by the genus Streptomyces. The sharp separation of the organism from representatives of the genus Streptomyces was strengthened by the fact that its BOX-PCR and RFLP of 16S rDNA-ITS fingerprints differed from those of over 450 recognized Streptomyces species. The isolate also had a profile of phenotypic properties that readily distinguished it from the genotypically close type strains. It is evident from the combination of genotypic and phenotypic data that strain FXJ14T (=AS 4.1858T = JCM 12278T = LMG 22082T) should be classified as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces glauciniger sp. nov. is proposed.

The genus Streptomyces remains a focus of systematic research, not only because streptomycetes are still the most promising source of commercially significant compounds, but also because current molecular biological methods are having an increasing impact on conventional streptomycete systematics that are based on phenotypic characteristics (Williams et al., 1983; Kämpfer et al., 1991). While molecular systematic data show that, based on recognized species, the genus is clearly overspeciated (Hatano et al., 2003; Lanoot et al., 2002, 2004), polyphasic studies based on a judicious combination of genotypic and phenotypic features continue to bring us novel species and indicate that the genus Streptomyces as a whole is underspeciated (Labeled et al., 1997; S. B. Kim et al., 1998; Al-Tai et al., 1999; B. Kim et al., 2000; Kim & Goodfellow, 2002; Li et al., 2002; Saintpierre et al., 2003). The present study describes a distinct mesophilic actinomycete, strain FXJ14T, as a novel Streptomyces species based on a polyphasic approach.

Strain FXJ14T was isolated on a yeast extract/starch agar (Emerson, 1958) plate supplemented with 50 μg cycloheximide ml⁻¹, which had been seeded with a soil suspension and incubated at 28 °C for 2 weeks. The soil sample was collected from willow woods in Nanning City, Guangxi Province, China. The isolate was maintained on Bennett’s agar (Jones, 1949) slopes at 4 °C and as glycerol suspensions (20%, v/v) at −20 °C. Biomass for chemotaxonomic and molecular systematic studies was prepared as described by Li et al. (2002). The arrangement of hyphae and spore chains were observed on modified Bennett’s agar and oatmeal agar (ISP medium 3) after 14 days at 28 °C using the coverslip technique of Kawato & Shinobu (1959). Spore chain morphology and spore surface ornamentation were observed by examining gold-coated dehydrated specimens with a model FEI QUANTA electron microscope. Cultural characteristics were observed on a number of standard media (Table 1).
after 14 days at 28 °C. Strain FXJ14^T was examined for a range of physiological properties using established procedures described by Williams et al. (1983) and Kämpfer et al. (1991).

The isomers of diaminopimelic acid and whole-organism sugars were analysed according to the procedures developed by Hasegawa et al. (1983) and Lechevalier & Lechevalier (1980). Polar lipids were examined and identified using the method of Minnikin et al. (1984). Menaquinones were extracted and purified following Collins (1985) and then analysed by HPLC (Wu et al., 1989). Fatty acids were extracted, methylated and analysed by GC using the standard Sherlock MIDI (Microbial Identification) system (Sasser, 1990; Kämpfer & Kroppenstedt, 1996). DNA G+C content of the tested strain was determined using the thermal denaturation method of Marmur & Doty (1962), with Escherichia coli ATCC 1.365 as a control.

Genomic DNA preparation and PCR amplification of the 16S rRNA gene sequence of strain FXJ14^T were performed as described by Chun & Goodfellow (1995). The PCR product was purified and directly sequenced as described by Huang et al. (2001). The resultant sequence was aligned manually using CLUSTAL X version 1.8 (Thompson et al., 1997) with available, almost complete sequences of type strains of the family Streptomycetaceae and the corresponding sequences of representative Streptomyces species; in each case, the reference sequences were retrieved from the DDBJ/EMBL/GenBank databases. The final dataset consisted of information on 23 strains. Phylogenetic trees were inferred by using the least-squares (Fitch & Margoliash, 1967), maximum-likelihood (Felsenstein, 1981), maximum-parsimony (Clade & Farris, 1969) and neighbour-joining (Saitou & Nei, 1987) algorithms from the PHYLIP package version 3.5c (Felsenstein, 1993). Evolutionary distance matrices were generated following the method of Kimura (1980). The resultant unrooted tree topologies were evaluated by bootstrap analyses (Felsenstein, 1985) of the neighbour-joining method based on 1000 resamplings. A partial sequence covering the variable γ-region (120 nt, positions 158–277) of the 16S rRNA gene sequence of strain FXJ14^T was also aligned with the corresponding nucleotide sequences of nearly 500 Streptomyces type strains retrieved from GenBank. A phylogenetic tree based on these partial sequences was generated using the neighbour-joining algorithm (Saitou & Nei, 1987).

BOX-PCR fingerprinting was carried out following the method of Lanoot et al. (2004). For RFLP of 16S rDNA ITS (internally transcribed spacer), a universal primer set (PA, 5′-AGAGTTTGATCCTGGCTCAG-3′; PB, 5′-GCGCCCTTAAGGTTTGAC-3′) was used to amplify both the 16S rRNA gene and the adjacent 16S–23S rDNA ITS region in one PCR. Digested PCR products, using restriction enzymes BsrUI and HaeIII, were separated on 8% polyacrylamide gels. The fingerprinting patterns were compared with corresponding in-house databases containing more than 450 recognized Streptomyces species using the software package BIONUMERICS version 2.5 (Applied Maths).

Morphological and chemical features of strain FXJ14^T were consistent with its assignment to the genus Streptomyces (Williams et al., 1989; Manfio et al., 1995). The organism formed an extensively branched substrate mycelium, aerial hyphae that carried smooth-surfaced spores in spiral spore chains (see Supplementary Fig. A in IJSEM Online) and a greyish aerial spore mass on several standard media (Table 1). It contained major amounts of LL-diaminopimelic acid in whole-organism hydrolysates, hexa- and octahydrogenated menaquinones with nine isoprene units [MK-9(H6,H8)] as predominant isoprenologues and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylglycerols as typical polar lipids (phospholipid type II sensu Lechevalier et al., 1977), but lacked characteristic sugars and mycolic acids. The fatty acid profile comprised mainly saturated straight-chain and iso- and anteiso-branched-chain fatty acids (fatty acid type 2c sensu Kroppenstedt, 1985).

The assignment of strain FXJ14^T to the genus Streptomyces was also supported by 16S rRNA gene sequence data. An almost complete 16S rRNA gene sequence (1428 nt) was determined for the organism. Preliminary phylogenetic
analysis, which included available, almost full-length sequences of type strains of the family Streptomycetaceae, showed that strain FXJ14T fell within the evolutionary radiation encompassed by the genus *Streptomyces* (data not shown). Despite the fact that the organism was found to be closely associated with some members of the genera *Kitasatospora* and *Streptacidiphilus* in a comparison of 16S rRNA gene sequences using a standard nucleotide–nucleotide BLAST search (Altschul et al., 1997) against DDBJ/EMBL/GenBank, specific nucleotide signatures of these two genera (Zhang et al., 1997; Kim et al., 2003) were absent in strain FXJ14T. It is clear from Fig. 1 that the tested strain forms a distinct phyletic line in the 16S rRNA gene sequence *Streptomyces* tree. Sequence similarity values between strain FXJ14T and its nearest neighbours, namely *Streptomyces* *rimosus* subsp. *rimosus* JCM 4667T, *Streptomyces* malaysiensis ATB-11T, *Streptomyces* sparsogenes NRRL 2940T and *Streptomyces* yeocohenonis CN 732T, were 97·3 (39 nt differences at 1428 sites), 97·2 (40 nt differences at 1415 sites), 97·2 (40 nt differences at 1425 sites) and 97·2 % (40 nt differences at 1425 sites), respectively. Values in this range are well below the range recorded for many recognized *Streptomyces* species (B. Kim et al., 1998; Al-Tai et al., 1999; B. Kim et al., 2000; Sembiring et al., 2000; Kim & Goodfellow, 2002; Li et al., 2002; Saintpierre et al., 2003), nor are the relationships between the tested strain and the type strains supported by good bootstrap levels. A number of phenotypic properties also separated strain FXJ14T from its most closely related type strains (Table 2). Although RFLP of 16S rDNA ITS fingerprints revealed that strain FXJ14T was most closely associated with the type strain of *Streptomyces cuspidiflorus* (Supplementary Fig. C), the two organisms were distinguished from one another on the basis of almost complete 16S rRNA gene sequence analysis (Fig. 1), sharing a relatively low sequence similarity of 96·9 %. With respect to BOX-PCR fingerprints, strain FXJ14T had a unique pattern when compared with corresponding data on 473 *Streptomyces* type strains (Supplementary Fig. D shows a partial dendrogram, including the neighbouring type strains), thereby confirming its distinct position in the genus *Streptomyces*.

Based on a combination of genotypic and phenotypic data, strain FXJ14T merits recognition as the type strain of a novel species in the genus *Streptomyces*, for which we propose the name *Streptomyces glauciniger* sp. nov.

Description of *Streptomyces glauciniger* sp. nov.

Streptomyces glauciniger (glau'ci.ni.ger. L. adj. *glaucus* greenish grey; L. adj. *niger* black; N.L. masc. adj. *glauciniger* greenish black, referring to the colour of colony reverse on modified Bennett’s agar).

Aerobic, Gram-positive mesophilic actinomycete that forms an extensively branched substrate mycelium and aerial hyphae that differentiate into long spiral spore chains with 15–20 cylindrical spores per chain. Spore surface is smooth. Soluble pigments are not produced, nor are melanin pigments formed on peptone/yeast extract/iron or tyrosine agars. Additional cultural characteristics on various agar media are given in Table 1. Growth occurs at 10–35 °C and pH 5.0–10.0, but not at 40 °C or at pH 4.0 or 11.0. Growth also occurs in the presence of phenol (0.1 %, w/v) but not in the presence of NaCl (5 %, w/v, novobiocin (5 µg ml⁻¹) or streptomycin (10 µg ml⁻¹). In addition to the properties listed in Table 2, the organism...
degrades adenine, casein, hypoxanthine, starch and xanthine, but not cellulose or elastin. It uses dextrin, D-galactose, D-glucose (all at 1%, w/v), sodium acetate and sodium citrate (both at 0.1%, w/v), but not D-maltose (1%, w/v), as sole carbon sources for energy and growth. Nitrate is reduced. Gelatin is not liquefied. It shows antimicrobial activity against strains of *Bacillus subtilis* and *Candida albicans*, but not against strains of *Aspergillus niger*, *Escherichia coli*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa* or *Staphylococcus aureus*. Cell wall is of type I, phospholipid type II and menaquinone MK-9(H6,H8).

Table 2. Phenotypic properties that separate strain FXJ14T from related Streptomyces species

<table>
<thead>
<tr>
<th>Character</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial spore mass on oatmeal agar</td>
<td>Greyish brown</td>
<td>Grey</td>
<td>Grey; sparse</td>
<td>Grey; sparse</td>
<td>Smokey black</td>
<td>Yellow/ white</td>
<td>Grey</td>
<td>Grey</td>
</tr>
<tr>
<td>Spore chain</td>
<td>Spiral</td>
<td>Warty</td>
<td>Rectiflexibles</td>
<td>Smooth</td>
<td>Rectiflexibles</td>
<td>Spiral</td>
<td>Rectiflexibles</td>
<td>Smooth</td>
</tr>
<tr>
<td>Spore surface</td>
<td>Smooth</td>
<td>Warty</td>
<td>Rectiflexibles</td>
<td>Smooth</td>
<td>Rectiflexibles</td>
<td>Spiral</td>
<td>Rectiflexibles</td>
<td>Smooth</td>
</tr>
<tr>
<td>Melanin production</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Production of diffusible pigments</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Growth on sole carbon sources (1%, w/v):

<table>
<thead>
<tr>
<th>Character</th>
<th>L-Arabinose</th>
<th>D-Fructose</th>
<th>meso-Inositol</th>
<th>D-Mannitol</th>
<th>D-Raffinose</th>
<th>L-Rhamnose</th>
<th>D-Sucrose</th>
<th>D-Xylose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Acknowledgements

This study was performed within the framework of the Belgian-Chinese programme 'Identification and classification of actinomycetes, specifically bioactive *Streptomyces* strains isolated from Chinese soil', supported by MOST/NSFC China and OSTC Belgium (BL/02/C10). This work was also supported by the NSFC (grant no. 30370002) and through the Royal Society–Chinese Academy of Sciences Exchange scheme (grant no. Q814). We are indebted to Professor R. M. Kroppenstedt (DSMZ, Germany) and Dr T. Kudo (JCM, Japan) for providing type cultures, and to Mrs Yamei Zhang for her technical assistance.

References

