Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov., novel marine bacteria of the family Flavobacteriaceae

Olga I. Nedashkovskaya,1 Makoto Suzuki,2 Marc Vancanneyt,3 Ilse Cleenwerck,3 Anatoly M. Lysenko,4 Valery V. Mikhailov1 and Jean Swings3

Correspondence
Olga I. Nedashkovskaya
olganedashkovska@yahoo.com

1Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100 let Vladivostoku 159, 690022, Vladivostok, Russia
2Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
3BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Faculteit Wetenschappen, Ghent University, B-9000 Ghent, Belgium
4Institute of Microbiology of the Russian Academy of Sciences, Prospekt 60 let October 7/2, Moscow, 117811, Russia

The taxonomic position of four newly isolated marine, heterotrophic, gliding, Gram-negative, aerobic, pigmented, agarolytic bacteria was established. 16S rRNA gene sequence analysis indicated affiliation of the isolates to the genus Zobellia in the family Flavobacteriaceae. DNA–DNA hybridization experiments revealed that the strains studied represent three distinct and novel species, for which the names Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov. are proposed, with KMM 3526T (= LMG 22069T = CCUG 47080T), KMM 3676T (= LMG 22070T = CCUG 47083T) and KMM 3677T (= LMG 22071T = CCUG 47084T), respectively, as the type strains.

The genus Zobellia was created by Barbeyron et al. (2001) and contains Gram-negative, aerobic, gliding, agaro-lytic bacteria that produce flexirubin-type pigments. To date, two species of the genus Zobellia have validly published names, Zobellia galactanivorans and Zobellia uliginosa, and both originate from marine environments. The latter species was isolated from beach sand in California and was originally classified as Flavobacterium uliginosum (ZoBell & Upham, 1944). Later, it was transferred to the genus Cytophaga as Cytophaga uliginosa (Reichenbach, 1989), reclassified in the genus Cellulophaga as Cellulophaga uliginosa (Bowman, 2000) and finally assigned to the new genus Zobellia on the basis of a higher DNA G + C content (mol%), its maximum growth temperature, the presence of flexirubin pigments and its unique phylogenetic position (Barbeyron et al., 2001). Z. galactanivorans, a marine species isolated from a red alga, was chosen as the type species.

In the course of a study on 450 strains isolated from sea water and bottom sediment samples, the sea urchin Strongu-locentrothus intermedius and red (Polysiphonia japonica), green (Acrosiphonia sonderi and Ulva fenestrata) and brown (Chorda filum and Laminaria japonica) algae, the taxonomic position of four isolates was unclear and was further investigated in the present study. We report the results of phenotypic, physiological and genomic analyses on the latter strains, which led to the description of three novel species of the genus Zobellia, for which the names Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov. are proposed.

The isolates investigated in this study were obtained during sampling in the Gulf of Peter the Great, Sea of Japan, Pacific Ocean, in June 2000. Strain KMM 3526T was isolated from a sea-water sample collected in Amursky Bay. Strains KMM 3676T, KMM 3926 and KMM 3677T were recovered from the brown alga L. japonica (KMM 3676T, KMM 3926) and the green alga A. sonderi (KMM 3677T), collected in Troitsa Bay. For the isolation, 0·1 ml sea water or algal tissue homogenates was transferred to marine agar 2216 (Difco).
After primary isolation and purification, strains were cultivated at 28 °C on the same medium and stored at −80 °C in marine broth (Difco) supplemented with 20 % (v/v) glycerol.

The almost complete 16S rRNA gene sequences of isolates KMM 3526^T, KMM 3676^T and KMM 3677^T were determined by PCR amplification and direct sequencing (Hiraishi, 1992). The conditions and reagents used for PCR amplification and sequencing of 16S rRNA gene were as described previously (Suzuki et al., 2001). The sequences were aligned on the secondary-structure model, maintained by the SSU rRNA database (Van de Peer et al., 2000), using the profile-alignment program of the CLUSTAL W software (Thompson et al., 1994). Evolutionary distances were then computed with the DNADIST program in the PHYLIP 3.572 package (Felsenstein, 1995) with the two-parameter model (Kimura, 1980); a phylogenetic tree was constructed using the neighbour-joining method (Saitou & Nei, 1987). To evaluate the phylogenetic trees, a bootstrap analysis with 1000 sample replications was performed with the SEQBOOT and CONSENSE programs in the PHYLIP 3.572 package.

The 16S rRNA gene-based analysis revealed that KMM 3526^T, KMM 3676^T and KMM 3677^T formed a coherent cluster within the genus *Zobellia* of the family *Flavobacteriaceae* (Fig. 1). The level of 16S rRNA gene sequence similarity between the KMM strains and *Z. galactanivorans* and *Z. uliginosa* ranged from 97.4 to 98.3 %. The 16S rRNA gene sequence similarities between strains KMM 3526^T, KMM 3676^T and KMM 3677^T ranged from 98.2 to 99.3 %.

Genomic DNA was prepared from cells cultivated on marine agar (Difco) for 24–48 h at 25 °C and extracted by following the DNA-extraction protocol of Pitcher et al. (1989), as modified by Leisner et al. (2002). DNA–DNA hybridizations were performed using the microplate method as described by Ezaki et al. (1989). Hybridizations were performed at 37 °C in a hybridization mixture containing 50 % formamide (2 × SSC, 5 × Denhardt’s solution, 2.5 % dextran sulphate, 50 % formamide, 100 µg denatured salmon sperm DNA ml⁻¹ and 1250 ng biotinylated probe DNA ml⁻¹). The DNA G+C content was determined using two methods: (i) the HPLC method of Mesbah et al. (1989) on DNA extracted as indicated above and (ii) the thermal denaturation method of Marmur & Doty (1962) on DNA extracted according to the protocol of Marmur (1961).

The G+C contents of the DNA of strains KMM 3526^T, KMM 3676^T and KMM 3677^T were 37.1, 36.1 and 38.6 mol%, respectively, when determined by the thermal denaturation method. Slightly higher values were observed when determined by HPLC: 37.7 mol% for KMM 3526^T, 36.3 mol% for KMM 3676^T and 38.8 mol% for KMM 3677^T. DNA–DNA relatedness between strains KMM 3526^T, KMM 3676^T and KMM 3677^T and the type strains *Z. galactanivorans* Dsi^T and *Z. uliginosa* CIP 104808^T ranged from 8 to 29 %. The DNA–DNA binding value for strains KMM 3676^T and KMM 3926 was 93 %.

To obtain whole-cell fatty acid profiles, the strains studied were grown at 28 °C for 24 h on marine agar 2216 (Difco). Analysis of fatty acid methyl esters was carried out according to the standard protocol of the Microbial Identification System (Microbial ID).

The dominant cellular fatty acids of the novel isolates and the type strains of *Z. galactanivorans* and *Z. uliginosa* were the straight-chain and branched-chain saturated and unsaturated fatty acids 15 : 0, iso-15 : 0, iso-15 : 0 3-OH,

Fig. 1. Phylogenetic relationship between strains KMM 3526^T, KMM 3676^T and KMM 3677^T and marine species of the family *Flavobacteriaceae*, based on 16S rRNA gene sequence comparisons. The phylogenetic tree was generated by using the neighbour-joining method (Saitou & Nei, 1987). The 16S rRNA gene sequence of *Capnocytophaga gingivalis* was used as the outgroup. The number shown next to each node indicates the percentage bootstrap value of 1000 replicates (only values of 70 % or higher were cited). The scale bar indicates a genetic distance of 0–01 (K_{Tm}).
iso-15:1 and iso-17:0 3-OH (Table 1). No significant differences were found between the species.

Isoprenoid quinones were extracted and analysed by using the method of Nakagawa & Yamasato (1993). The major lipoquinone of the novel isolates, Z. galactanivorans DsijT and Z. uliginosa CIP 104808T was MK-6.

Gram-staining, hydrolysis of agar, starch, casein, elastin, gelatin, cellulose [filter paper and carboxymethylcellulose (CM-cellulose)], chitin, DNA, urea and algicin acids, flexirubin production, growth at different pH values, production of acid from carbohydrates, hydrolysis of Tween 20, 40 and 80, nitrate reduction, production of hydrogen sulphide and indole and β-galactosidase, oxidase, catalase and alkaline phosphatase activities were tested according to Gerhardt et al. (1994). Oxidative versus fermentative utilization of glucose was determined using Hugh & Leifson medium modified for marine bacteria (Lemos et al., 1985). Susceptibility to antibiotics was tested as described earlier modified for marine bacteria (Lemos et al., 1985). The presence of oxidase, catalase, β-galactosidase, agarase and alkaline phosphatase activities, the absence of urease activity, flexirubin-type pigment production, the reduction of nitrate to nitrite and the oxidation of carbohydrates, the absence of crystalline and amorphous cellulose hydrolysis and the respiratory quinone and fatty acid compositions of strains KMM 3526T, KMM 3676T and KMM 3677T are consistent with the characteristics of Z. galactanivorans DsijT and Z. uliginosa CIP 104808T (Table 1). However, the isolates differed clearly from Z. galactanivorans and Z. uliginosa by their inability to grow at 42 °C and to hydrolyse casein, their ability to oxidize L-rhamnose and the lower G+C content of their DNA (Table 2). Strain KMM 3526T is distinguished from strain KMM 3677T by the inability to grow with 8 % NaCl at 37 °C or to hydrolyse Tween 40, by the absence of acid production from L-arabinose, D-cellobiose, DL-xyllose and mannitol, by susceptibility to streptomycin and by resistance to tetracycline (Table 2). It is possible to differentiate strains KMM 3526T and KMM 3676T by the hydrolysis of starch, alginate, DNA, Tweens 20, 40 and 80, by the

Table 1. Whole-cell fatty acid composition of the Zobellia species studied

Those fatty acids for which the mean amount for all taxa was less than 1 % are not given. Tr, Trace amount (less than 1 %); ND, not detected.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>KMM 3526T</th>
<th>KMM 3676T</th>
<th>KMM 3677T</th>
<th>Z. galactanivorans DsijT</th>
<th>Z. uliginosa CIP 104808T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight-chain fatty acids:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td>1·0</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td>C15:0</td>
<td>14·4</td>
<td>12·5</td>
<td>11·0</td>
<td>7·5</td>
<td>10·2</td>
</tr>
<tr>
<td>C15:0 3-OH</td>
<td>Tr</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>C15:10α6c</td>
<td>3·2</td>
<td>2·7</td>
<td>1·7</td>
<td>1·1</td>
<td>1·4</td>
</tr>
<tr>
<td>C16:0</td>
<td>1·0</td>
<td>Tr</td>
<td>2·4</td>
<td>2·2</td>
<td>2·6</td>
</tr>
<tr>
<td>C16:0 3-OH</td>
<td>2·4</td>
<td>2·6</td>
<td>4·9</td>
<td>3·0</td>
<td>2·9</td>
</tr>
<tr>
<td>C17:10α6c</td>
<td>1·2</td>
<td>1·0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>C18:10α6c</td>
<td>0·7</td>
<td>1·1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Branched fatty acids:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C15:0</td>
<td>22·5</td>
<td>16·8</td>
<td>20·1</td>
<td>21·1</td>
<td>21·9</td>
</tr>
<tr>
<td>iso-C15:0 3-OH</td>
<td>4·6</td>
<td>6·1</td>
<td>5·9</td>
<td>8·3</td>
<td>6·7</td>
</tr>
<tr>
<td>anteiso-C15:0</td>
<td>1·0</td>
<td>1·0</td>
<td>ND</td>
<td>1·8</td>
<td>1·4</td>
</tr>
<tr>
<td>iso-C15:1</td>
<td>10·4</td>
<td>12·3</td>
<td>14·9</td>
<td>8·8</td>
<td>12·0</td>
</tr>
<tr>
<td>iso-C17:0 3-OH</td>
<td>15·1</td>
<td>22·4</td>
<td>19·7</td>
<td>23·7</td>
<td>25·9</td>
</tr>
<tr>
<td>iso-C17:10α9</td>
<td>3·8</td>
<td>3·1</td>
<td>2·4</td>
<td>5·1</td>
<td>3·6</td>
</tr>
<tr>
<td>Summed feature 3*</td>
<td>15·5</td>
<td>14·9</td>
<td>14·3</td>
<td>14·5</td>
<td>9·9</td>
</tr>
<tr>
<td>ECL 13-565†</td>
<td>ND</td>
<td>1·4</td>
<td>1·8</td>
<td>2·4</td>
<td>1·4</td>
</tr>
</tbody>
</table>

*Summed feature 3 consisted of one or more of the following fatty acids, which could not be separated by the Microbial Identification System: C16:0, α7c, C16:10α7t and iso-C15:0 2-OH.
†ECL, Equivalent chain-length. The identity of the fatty acid is not known.
oxidation of L-arabinose, D-cellobiose, D-raffinose and mannitol, and by susceptibility to streptomycin. KMM 3677T is distinguished from KMM 3676T by the ability to grow with 10% NaCl and at 37 °C, the ability to oxidize DL-xylose and the ability to hydrolyse starch, alginate, DNA, Tween 20 and Tween 80.

Phenotypic findings in combination with the differences in the phylogenetic positions, based on 16S rRNA gene sequence analysis, and the DNA–DNA relatedness between the strains studied and the existing Zobellia species, support the inclusion of strains KMM 3526T, KMM 3676T and KMM 3677T in the genus Zobellia as three distinct species, for

Table 2. Phenotypic characteristics of the Zobellia species

All strains were positive for the following: respiratory type of metabolism; movement by gliding; a requirement for NaCl for growth; flexirubin production; oxidase, catalase, β-galactosidase and alkaline phosphatase activities; growth at 4 °C (minimum temperature for growth of Z. galactanivorans DsjT is 10 °C; Barbeyron et al., 2001) and with 6% NaCl; hydrolysis of agar and gelatin; acid formation from L-fucose; nitrate reduction; utilization of L-arabinose, D-glucose, D-lactose, D-mannose, D-sucrose and mannitol; susceptibility to carbenicillin, lincomycin and oleandomycin. All strains were negative for the following: hydrolysis of D-cellulose (CM-cellulose and filter paper), chitin and urea; production of H2S, indole and acetoin; oxidation of D-galactose, D-lactose, D-melibiose, L-sorbose, N-acetylglucosamine, citrate, adonitol, dulcitol, glycerol and inositol; utilization of inositol, sorbitol, malonate and citrate; susceptibility to gentamicin, kanamycin, neomycin and polymixin B.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Z. amurskyensis KMM 3526T</th>
<th>Z. laminariae KMM 3676T, KMM 3926</th>
<th>Z. russellii KMM 3677T</th>
<th>Z. galactanivorans DsjT</th>
<th>Z. uliginosa CIP 104808T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8% NaCl</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>10% NaCl</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>32 °C</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37 °C</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>42 °C</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casein</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Starch</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alginate</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DNA</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tween 20</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Tween 40</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Tween 80</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Acid from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>D-Cellobiose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>D-Maltose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>D-Raffinose</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>D-Sucrose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>L-Xylose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Mannitol</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Susceptibility to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>determined by:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal denaturation</td>
<td>37.1</td>
<td>36.1–36.7</td>
<td>38.6</td>
<td>43.4</td>
<td>42.9</td>
</tr>
<tr>
<td>HPLC</td>
<td>37.7</td>
<td>36.3</td>
<td>38.8</td>
<td>43.0</td>
<td>42.9</td>
</tr>
</tbody>
</table>

* Determined for the type strain.
which the names *Zobellia amurskyensis* sp. nov., *Zobellia laminariae* sp. nov. and *Zobellia russelii* sp. nov. are proposed.

Description of Zobellia amurskyensis sp. nov.

Zobellia amurskyensis (a.mur.sky.en’sis. N.L. fem. adj. *amurskyensis* of Amursky Bay, in which the type strain was isolated).

Cells range from 0·4 to 0·5 μm in width and from 1·2 to 1·4 μm in length. On marine agar, colonies are 2–4 mm in diameter, circular, shiny with entire edges, pigmented dark orange and sunken in the agar. Growth occurs at 4–32 °C, with the optimum at 23–25 °C, and at 1–6 % NaCl, with the optimum at 2 % NaCl. Decomposes agar, gelatin, starch, alginate, DNA, Tween 20 and Tween 80. Does not hydrolyse casein, cellulose (CM-cellulose and filter paper), chitin or Tween 40. Forms acid from D-glucose, L-fucose, D-maltose, L-rhamnose and D-sucrose, but not from L-arabinose, D-cellobiose, D-galactose, D-lactose, D-melibiose, L-raffinose, DL-xylitol, N-acetylgalactosamine, citrate, adonitol, dulcitol, glycerol, inositol or mannitol. Utilizes L-arabinose, D-lactose, D-mannose and mannitol, but not inositol, sorbitol, malonate or citrate. Nitrate is reduced. H2S, indole and acetoin (Voges–Proskauer reaction) are not produced. Susceptible to carbenicillin, lincomycin, oleandomycin, benzylpenicillin, gentamicin, kanamycin, neomycin, polymyxin B, streptomycin and tetracycline. The predominant fatty acids are 15 : 0 (12·5 %), i15 : 0 (16·8 %), i15 : 0 3-OH (6·1 %), i15 : 1 (12·3 %) and i17 : 0 3-OH (22·4 %). The major lipoquinone is MK-6. The G+C content of the DNA is 36–37 mol%.

The type strain is KMM 3676T (=LMG 22070T = CCUG 47083T). Isolated from the brown alga *Laminaria japonica*.

Description of Zobellia russelii sp. nov.

Zobellia russelii (rus’sel.li.i. N.L. gen. n. *russelii* of H. L. Russell, the American scientist, for his contribution to the development of marine microbiology).

Cells range from 0·4–0·5 μm in width and from 1·2 to 1·4 μm in length. On marine agar, colonies are 2–4 mm in diameter, circular, shiny with entire edges, pigmented dark orange and sunken in the agar. Growth occurs at 4–38 °C, with the optimum at 25–28 °C, and at salt concentrations between 1 and 10 % NaCl, with the optimum at 2–3 %. Decomposes agar, gelatin, starch, alginate, DNA, Tween 20, Tween 40 and Tween 80. Does not hydrolyse casein, cellulose (CM-cellulose and filter paper) or chitin. Forms acid from L-arabinose, D-cellobiose, D-glucose, L-fucose, D-maltose, L-rhamnose, D-sucrose, DL-xylitol and mannitol, but not from D-galactose, D-lactose, D-melibiose, L-sorbose, D-raffinose, N-acetylgalactosamine, citrate, adonitol, dulcitol, glycerol or inositol. Utilizes D-lactose and D-mannose, but not inositol, sorbitol, malonate or citrate. Nitrate is reduced. H2S, indole and acetoin (Voges–Proskauer reaction) are not produced. Susceptible to carbenicillin, lincomycin, oleandomycin and tetracycline, but resistant to ampicillin, benzylpenicillin, gentamicin, kanamycin, neomycin, polymyxin B and streptomycin. The predominant fatty acids are 15 : 0 (11·0 %), i15 : 0 (20·1 %), i15 : 0 3-OH (5·9 %), i15 : 1 (14·9 %) and i17 : 0 3-OH (19·7 %). The major lipoquinone is MK-6. The G+C content of the DNA is 38·6 mol%.

The type strain is KMM 3677T (=LMG 22071T = CCUG 47084T). Isolated from the green alga *Acrosiphonia sonderi*.

Acknowledgements

We are grateful to Dr T. Barbeyrion (Station Biologique de Roscoff, France) and Dr C. Bizet (Collection de Bactéries de l’Institute Pasteur, France) for providing us with the type strains *Z. galactanivorans* DsijT and *Z. uliginosa* CIP 104808T, respectively, used in this study. This research was supported by grants from the Ministry for Industry, Science and Technologies of the Russian Federation (22-16), the Russian Foundation for Basic Research (02-04-49517) and the Far-Eastern Branch and Presidium of the Russian Academy of Sciences (03-1-0-05-005).

References

http://ijs.sgmjournals.org

