Characterization of the marine propionate-degrading, sulfate-reducing bacterium *Desulfofaba fastidiosa* sp. nov. and reclassification of *Desulfomusa hansenii* as *Desulfofaba hansenii* comb. nov.

Lone Abildgaard, Niels Birger Ramsing and Kai Finster

Department of Microbial Ecology, Bldg 540, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus C, Denmark

A rod-shaped, slightly curved sulfate reducer, designated strain P2\(^T\), was isolated from the sulfate–methane transition zone of a marine sediment. Cells were motile by means of a single polar flagellum. The strain reduced sulfate, thiosulfate and sulfite to sulfide and used propionate, lactate and 1-propanol as electron donors. Strain P2\(^T\) also grew by fermentation of lactate. Propionate was oxidized incompletely to acetate and CO\(_2\). The DNA G+C content was 48.8 mol%. Sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P2\(^T\) was related to the genera *Desulfonema*, *Desulfococcus*, *Desulfosarcina*, *Desulfofaba*, *Desulfomusa* and *Desulfofrigus*. These genera include incomplete as well as complete oxidizers of substrates. Strain P2\(^T\) shared important morphological and physiological traits with *Desulfofaba gelida* and *Desulfomusa hansenii*, including the ability to oxidize propionate incompletely to acetate. The 16S rRNA gene similarities of P2\(^T\) to *Desulfofaba gelida* and *Desulfomusa hansenii* were respectively 92.9 and 91.5%. Combining phenotypic and genotypic traits, we propose strain P2\(^T\) to be a member of the genus *Desulfofaba*. The name *Desulfofaba fastidiosa* sp. nov. (type strain P2\(^T\) = DSM 15249\(^T\) = ATCC BAA-815\(^T\)) is proposed, reflecting the limited number of substrates consumed by the strain. In addition, the reclassification of *Desulfomusa hansenii* as a member of the genus *Desulfofaba*, *Desulfofaba hansenii* comb. nov., is proposed. A common line of descent and a number of shared phenotypic traits support this reclassification.

INTRODUCTION

Propionate is produced during fermentation of organic matter under anoxic conditions. In oxygen-free marine sediments, propionate is quantitatively the second-most important volatile fatty acid (Parkes et al., 1993). Despite its importance, in situ concentrations of propionate are low, because it is efficiently consumed by sulfate-reducing bacteria. Until recently, all propionate-consuming sulfate reducers grouped in one phylogenetic lineage around the genus *Desulfobulbus* (Widdel & Pfennig, 1982; Isaksen & Teske, 1996; Rabus et al., 2000). Apart from a common phylogeny, the organisms also all oxidize propionate incompletely to acetate. However, within the past few years, two novel species of propionate-consuming sulfate reducers have been isolated that share with the ‘Desulfobulbus’ the incomplete oxidation of propionate but group phylogenetically with the completely oxidizing genera of the *Desulfonema/Desulfococcus/Desulfosarcina* assemblage. The two species were placed in different genera as *Desulfofaba gelida* and *Desulfomusa hansenii* (Knoblauch et al., 1999; Finster et al., 2001).

In this communication, we report on the isolation and characterization of a third isolate, designated strain P2\(^T\), which shares a common phylogeny and physiology with both *Desulfofaba gelida* and *Desulfomusa hansenii*.

METHODS

Origin of the enrichment cultures. Sediment cores were collected in February 2001 in Aarhus Bay, a semi-enclosed embayment on the
East coast of Jutland, Denmark (56°09′ 20″ N 10°19′ 24″ E). The cores were taken at a water depth of 15 m. The salinity was 28.4%o and the temperature was 6.3°C. The sediment consisted of fine sand, silt and clay. Measurements of methane oxidation rates and sulfate reduction revealed that both rates peaked in the 170–200 cm depth interval. This zone was identified as the sulfate–methane transition zone. Sediment for enrichment cultures was withdrawn from that depth.

Enrichment and isolation. The enrichment medium was identical to DSMZ medium 193 with the following modifications. Firstly, sodium acetate solution was not added and, secondly, the vitamin solution used in the original medium was replaced by the following solutions: 1 ml vitamin solution (10 mg biotin, 3 mg folic acid, 15 mg pyridoxine hydrochloride dihydrate, 100 mg nicotinic acid, 50 mg calcium D-pantothenate, 40 mg p-aminobenzoic acid and 1-42 g Na2HPO4 dissolved in 1 l distilled water), 1 ml thiamin chloride solution (100 mg thiamin chloride and 3-56 g Na2HPO4 dissolved in 1 l distilled water) and 1 ml vitamin B12 solution (50 mg cyanocobalamin dissolved in 1 l distilled water). In addition, 2 ml Na2SeO3·5H2O solution (stock concentration 10 μM) and 2 ml Na3WO4 solution (stock concentration 10 μM) were added to 1 l medium. The medium was prepared as described in the DSMZ manual.

The medium was distributed into 50-ml screw-capped bottles. CaCl2 (10 mM final concentration), MgCl2 (50 mM final concentration), propionate (15 mM final concentration) and sulfate (20 mM final concentration) were added from sterile stock solutions prior to inoculation. For the isolation of pure cultures, the modified deep agar dilution technique (Isaksen & Teske, 1996) was applied. The agar was washed three times in distilled water before use.

Physiological tests. Substrate utilization was studied in completely filled screw-capped bottles (50 ml) or Hungate tubes with a gas phase. Growth tests with CO and methane were performed in half-full 100-ml bottles sealed with butyl-rubber stoppers. Growth was determined microscopically and by following the production of hydrogen sulfide using the method of Cline (1969). Cultures showing growth were transferred to fresh medium containing the respective substrate at least three times to confirm the result. Cultures not showing growth after 1 month were maintained for at least 4 months and checked for growth on a regular basis. The presence of polyhydroxyalkanoates in the cells was investigated with the Nile blue stain (Ostle & Holt, 1982). Temperature experiments were carried out in duplicate in a temperature-controlled block at 11 different temperatures ranging from 8-8 to 37-4°C. pH tolerance was tested in triplicate in media adjusted to 12 different pH values between 4-0 and 8-5. Growth rates were calculated from changes in OD600. At pH values above 7-4, reliable OD measurements were no longer possible due to precipitation of medium components. Production of hydrogen sulfide was therefore measured in all tubes and used as an indicator of activity. Cell production was confirmed by microscopy with a non-growing control as reference. The salt requirement for growth was monitored at 11 different NaCl concentrations ranging from 0 to 38 g l⁻¹, eight different MgCl2·6H2O concentrations ranging from 5 to 68 mM and eight different CaCl2·2H2O concentrations ranging from 1 to 13 mM. Tests were carried out in duplicate. The effect of different salt concentrations was monitored by measuring H2S production over time.

Chemical analyses. Sulfide was measured as described by Cline (1969). Sulfate was determined by suppressed ion chromatography according to Isaksen & Finster (1996). Propionate and acetate were analysed by ion-exclusion chromatography as described by Finster et al. (2001). The G+C content of genomic DNA was determined at the Identification Service of the DSMZ by Peter Schumann. DNA was isolated according to Visuvanathan et al. (1989) and purified as described by Cashion et al. (1977) and the G+C content was determined by HPLC analysis (Mesbah et al., 1989; Tamaoka & Komagata, 1984).

Microscopy. Samples for TEM were placed on a carbon-celloidin copper grid (200 mesh) and stained with a drop of 1% (w/v) uranyl acetate. Cells were observed with a Jeol 1200EX transmission electron microscope at 120 kV.

Nucleic acid extraction, PCR amplification and sequencing. Nucleic acid was extracted using the FastDNA spin kit for various samples (Bio 101) according to the instructions of the manufacturer. The SSU rDNA was PCR-amplified and sequenced as described by Lane (1991). Almost complete 16S rDNA sequences were obtained with primers 26f/1390r (primer nomenclature refers to the 5′-ends of respective target sites on the 16S rDNA according to the Escherichia coli numbering of the 16S rRNA; Briosi et al., 1981). PCR was performed at an annealing temperature of 57°C with 25 cycles. PCR products were purified with the QiAquick PCR purification kit (Qiagen) according to the instructions of the manufacturer. Sequences were determined using the direct dideoxyribonucleotide chain-termination method with reverse transcriptase as described by Lane et al. (1985) using the kit from Amersham Pharmacia Biotech. The gel was run on an ALFexpress sequencer (Amersham Pharmacia Biotech) and sequences were handled with the ALFwin software (Amersham Pharmacia Biotech). A sequence of 1386 nucleotides was obtained after sequencing both strands with multiple primers.

The dissimilatory sulfate reductase (DSR) gene was amplified using primers designed by Wagner et al. (1998). Due to problems with non-specific annealing and low yields of the correct amplicon, the band of the correct length was cut out of an agarose gel and purified (QiAquick gel extraction kit; Qiagen) following the manufacturer’s instructions. The DNA was ligated into a pcR-XL-TOPO vector and transformed into ONE SHOT Escherichia coli cells according to the instructions of the manufacturer (TOPO-XL-pcR Cloning: Invitrogen); randomly selected clones were purified using a purification kit (QIAprep Spin Miniprep kit; Qiagen). Clones were amplified using a ThermoSequenase fluorescent cycle-sequencing kit (Amersham Pharmacia Biotech) and sequenced on an ALFexpress sequencer. A partial sequence of 876 nucleotides was obtained; 845 positions were used in the alignment.

Phylogenetic analysis. Sequence fragments were assembled manually in sequp version 0.6 (Gilbert, 2002). Each resulting rDNA sequence was aligned with its closest relative using the on-line service of Ribosomal Database Project II (RDP-II) Sequence Aligner version 1.7 and compared to the GenBank and RDP-II databases using the BLAST algorithm (National Center for Biotechnology Information) and sequence match version 2.7 (Maidak et al., 2001; Wheeler et al., 2002; Zhang et al., 2000). Alignments were checked manually in sequp. DSR gene sequences were aligned as nucleotide sequences or translated into an amino acid sequence before being aligned against their closest relatives. Phylogenetic analyses were performed with PAUP version 4.0b10. Only unambiguously aligned positions were used. The data matrix for the 165 rDNA sequences was analysed by distance-matrix (neighbour-joining), maximum-parsimony and maximum-likelihood approaches, whereas the DSR matrices were analysed by distance-matrix analysis only. Generally, bootstrap analysis was performed with 100 resamplings, except from the distance and maximum-parsimony algorithms analysing the relatedness of the SSU rDNA genes. Here, 1000 bootstraps were performed. Multifurcations were created at the appropriate basal node when branching patterns were only supported in less than 50% of the bootstrap resamplings.
RESULTS AND DISCUSSION

Enrichment and isolation

After 1 week, dividing cells and an increasing amount of sulfide were observed in a culture bottle containing propionate and sulfate. After several transfers, a stable mixed culture was obtained composed of three different, morphologically distinguishable cell types: large, curved rods, which were the dominant type, thin rods with endospores and coccoid cells. In deep agar dilutions, two types of colonies developed. One was white and fluffy and the other light brown, disk-shaped and smooth. Colonies were picked and transferred to fresh media. Prior to isolation, samples from the two colony types were withdrawn using Pasteur pipettes and tested for the presence of the DSR gene. The DSR gene is indicative of sulfate reduction potential. Only cells from the light-brown colonies were DSR positive. Cells producing white colonies were not studied further. After two additional series of deep agar dilution, several pure cultures of propionate-degrading sulfate reducers were obtained. All cultures were morphologically identical. They contained rod-shaped, slightly curved cells. One culture, designated strain P2T, was chosen for detailed investigation.

Purity controls

Culture purity was checked microscopically prior to each transfer. In addition, purity of the isolate was tested in sulfate-free medium containing yeast extract (0.1%, w/v), glucose (10 mM), fumarate (10 mM) and pyruvate (20 mM). There was no growth on this medium.

Cell morphology

Cells of strain P2T were slightly curved, rod-shaped with round ends. They were 0.8–1.0 μm wide and 3.3–8 μm long (Fig. 1, Table 1). When grown with thiosulfate as electron acceptor, cells were longer than cells grown with sulfate as electron acceptor (Supplementary Figs A and B in IJSEM Online). Cells were motile by means of a single polar flagellum.

Phylogeny based on comparison of SSU rDNA

Strain P2T is a member of the δ-subclass of the Proteobacteria. Phylogenetic analysis of 16S rDNA (Fig. 2) and the DSR gene sequence (Supplementary Fig. C) showed that strain P2T is related to the Desulfonema/Desulfococcus/Desulfosarcina assemblage, which also includes the incompletely oxidizing genera ‘Desulfobotulus’, Desulfoba, Desulfomusa and Desulforegula. The overall branching pattern was supported by high bootstrap values in trees based on neighbour-joining, maximum-parsimony and maximum-likelihood algorithms. The closest relatives of strain P2T were Desulfoba gelida and Desulfomusa hansenii, with respective 16S rDNA sequence similarity of 92.9 and 91.5%. The detailed branching pattern was, however, dependent on the algorithm. Using the maximum-likelihood algorithm, strain P2T formed a common line of descent with Desulfofababa gelida and Desulfomusa hansenii. The branching pattern was supported by a bootstrap value of 54%. Interestingly, neither the neighbour-joining nor maximum-parsimony algorithm supported this branching pattern. In contrast, both algorithms supported a multifurcation as the best fit, indicating that a common ancestor of strain P2T, Desulfomusa hansenii and Desulfofababa gelida could not be assigned.

Growth conditions and nutrition

Some properties of strain P2T in comparison with other incomplete oxidizers of the Desulfonema/Desulfococcus/Desulfosarcina lineage are shown in Table 1. The optimal pH for growth was 6.8–7.1. The strain was able to grow in the pH range 6.0–7.75. The strain was grown at a salinity of 13.5 g l⁻¹; optimal growth was obtained in the range 10–16 g l⁻¹. However, the strain was able to grow at all salinities tested (6–38 g l⁻¹). CaCl₂ at a concentration of 7 mM enhanced growth and, again, growth was observed at all tested CaCl₂ concentrations (1–13 mM). MgCl₂ concentrations of 5–68 mM neither enhanced nor inhibited
Table 1. Physiological comparison of the incomplete oxidizers of the Desulfonema/Desulfococcus/Desulfosarcina assemblage

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell shape</td>
<td>Vibrio</td>
<td>Rod</td>
<td>Curved rod</td>
<td>Curved thick rod</td>
<td>Curved thick rod</td>
<td>Curved thick rod</td>
</tr>
<tr>
<td>Width (µm)</td>
<td>1.5</td>
<td>1–1.3</td>
<td>0.8</td>
<td>3.1</td>
<td>2–3</td>
<td>0.8–1.7</td>
</tr>
<tr>
<td>Length (µm)</td>
<td>3.5–5.5</td>
<td>2.6–3</td>
<td>3.2–4.2</td>
<td>5.4–6.2</td>
<td>3–6</td>
<td>3–0–3.8</td>
</tr>
<tr>
<td>Motility</td>
<td>+ (polar flagellum)</td>
<td>+ (only old cultures)</td>
<td>+ (only old cultures)</td>
<td>+ (polar flagellum)</td>
<td>+ (polar flagellum)</td>
<td></td>
</tr>
<tr>
<td>Temperature for growth (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum</td>
<td>34</td>
<td>25–30</td>
<td>18</td>
<td>7</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>Range</td>
<td>15–38</td>
<td>ND–32</td>
<td>−1.8–ND</td>
<td>−1.8–10</td>
<td>8–30</td>
<td>5–33</td>
</tr>
<tr>
<td>Optimal pH</td>
<td>7.7</td>
<td>ND</td>
<td>7.0–7.4</td>
<td>7.1–7.6</td>
<td>7.2–7.4</td>
<td>6.8–7.1</td>
</tr>
<tr>
<td>Optimal pH</td>
<td>No optimum</td>
<td>1.0</td>
<td>1.0–2.5</td>
<td>1.4–2.5</td>
<td>1.3</td>
<td>1.1–6</td>
</tr>
<tr>
<td>Optimal MgCl₂ (%)</td>
<td>ND</td>
<td>ND</td>
<td>0.3–2.0</td>
<td>0.015–2.2</td>
<td>ND</td>
<td>No optimum*</td>
</tr>
<tr>
<td>Shortest doubling time (h) (on propionate)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>144</td>
<td>ND</td>
<td>4–3</td>
</tr>
<tr>
<td>Poly-hydroxyalkanoates</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G+C content (mol%)</td>
<td>53</td>
<td>ND</td>
<td>52.1</td>
<td>52.5</td>
<td>53.4</td>
<td>48.8</td>
</tr>
<tr>
<td>16S rDNA similarity to strain P2ᵀ (%)</td>
<td>89.3</td>
<td>91.6</td>
<td>91.8</td>
<td>92.9</td>
<td>91.5</td>
<td>NA</td>
</tr>
<tr>
<td>Propionate oxidation to acetate and CO₂</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Other electron donors</td>
<td>Fatty acids (≥ C4), 2-methylbutyrate, lactate, pyruvate</td>
<td>Fatty acids (≥ C4), dicarboxylic acids, amino acids, alcohols</td>
<td>Butyrate, formate, lactate, pyruvate, other organic acids, alanine</td>
<td>Pyruvate, alcohols, dicarboxylic acids, alanine, hydrogen + acetate</td>
<td>Lactate, 1-propanol</td>
<td></td>
</tr>
<tr>
<td>Fermentative growth</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fermentation of lactate</td>
<td>ND</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Electron acceptors (mM)</td>
<td>Sulfite (5)</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Thiosulfate (20)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Elemental sulfur (NA)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

*Concentrations of 0.1–1.4% were tested.
The temperature range for growth was 5–33°C. The isolate grew optimally at 28°C with a doubling time of 4.3 h. With sulfate as electron acceptor, the isolate grew with propionate, lactate or 1-propanol as electron donors. Sulfate, sulfite and thiosulfate served as electron acceptors, while sulfur, nitrate, iron(III) citrate and fumarate did not. The strain also grew by fermentation of lactate. In contrast to Desulfomusa hansenii and Desulfobaba gelida, strain P2T is not very versatile with respect to its range of substrates (Table 1). Strain P2T did not grow on pyruvate, succinate, fumarate, ethanol, butanol or alanine, substrates upon which Desulfomusa hansenii and Desulfobaba gelida grow. However, strain P2T and Desulfobaba gelida but not Desulfomusa hansenii grow with thiosulfate as electron acceptor. In the assemblage of its closest relatives (‘Desulfobotulus’, Desulfosfrigus, Desulfomusa and Desulfobaba), strain P2T is distinct in its ability to ferment lactate, but fermentation in general is known from several members of the assemblage.

Fig. 2. Phylogenetic tree showing the affiliation of the 16S rDNA sequence from strain P2T to selected reference sequences of the δ-subclass of the Proteobacteria. The tree was calculated by maximum-likelihood analysis with default settings of the distance-matrix analysis in PAUP 4.0b10. The sequences of Synechococcus sp. and Nostoc muscorum were used as an outgroup. Numbers at nodes indicate bootstrap values. Only bootstrap numbers greater than 50 are shown. Strains and GenBank accession numbers: Desulfobacter latus DSM 3381T (AJ441315), Desulfobacter postgatei DSM 2034T (AF418180), Desulfobacter sp. DSM 2035 (M34415), Desulfobacterium autotrophicum DSM 3382T (M34409), ‘Desulfobacterium vacuolatum’ DSM 3385 (M34408), ‘Desulfobotulus sapovorans’ ATCC 33892 (M34402), Desulfobulbus elongatus FP T (X95180), Desulfobulbus rhabdorformis M16T (U12253), Desulfoococcus multivorans DSM 2059T (AF418173), Desulfohaba gelida PSv29T (AF099063), Desulfosfrigus fragile LSv21T (AF099065), Desulfosfrigus oceanense ASv26T (AF099064), Desulfomusa hansenii DSM 12642T (AF321820), Desulfonema limicola DSM 2076T (U45990), Desulfoslogula conservatrix Mb1PaT (AF243334), strain oXyS1 (Y17286), Desulfoarcina variabilis DSM 2060T (M34407), Desulfohabri desulfuricans DSM 642T (M37313), Desulfohabri profundus DSM 11384T (U90726), Desulfohabri zosterae DSM 11974T (Y18049), Nostoc muscorum PCC 7120 (X95559), Synechococcus sp. PCC 6301 (X03538).
Strain P2T accumulated polyhydroxyalkanoates; cells of two lines in nature. Studies should focus on the quantitative importance of the least two phylogenetically distinct lines of descent. Future studies should focus on the quantitative importance of the two lines in nature.

Storage compounds
Strain P2T accumulated polyhydroxyalkanoates; cells of strain P2T and Desulfovibrio hansenii contained inclusions of polyhydroxyalkanoates of an unidentified type (K. Finster, unpublished data). Desulfofaba gelida was not tested for these compounds. The physiological role of these storage compounds has not been determined so far. The presence of polyhydroxyalkanoates, however, distinguishes them from Desulfobulbus species, which accumulate polyglucose instead (Stams et al., 1983).

Stoichiometry of propionate oxidation
Changes in concentrations of propionate, acetate, sulfate and hydrogen sulfide and in the amount of cell carbon were measured in three different cultures. Propionate was oxidized incompletely to acetate and CO2. One mol acetate was formed from 1 mol propionate and 1 mol hydrogen sulfide was formed from 1 mol sulfate. The molar ratios of propionate dissimilation to acetate and sulfide production agreed with the following equation:

\[4\text{CH}_3\text{CH}_2\text{COO}^- + 3\text{SO}_4^{2-} \rightarrow 4\text{CH}_3\text{COO}^- + 4\text{HCO}_3^- + 3\text{HS}^- + \text{H}^+ \]

The amount of propionate consumed for cell material synthesis was calculated by the equation given by Finster et al. (2001): \[17\text{CH}_3\text{CH}_2\text{COO}^- + 5\text{HCO}_3^- + 15\text{H}_2\text{O} \rightarrow 14\text{C}_2\text{H}_5\text{O}_3^- + 22\text{OH}^- \]. Thus, 0.0118 mmol propionate is needed for production of 1'-0 mg cells (dry weight). Strain P2T produced 2-60 g biomass per mol propionate and thus incorporated about 3% of the consumed propionate into biomass. The inability of strain P2T to oxidize acetate completely to CO2 is interesting, considering its phylogenetic affiliation to the complete oxidizers such as Desulfofrigus, Desulfofaba and Desulfofaba hansenii. Until recently, incompletely oxidizing sulfate reducers grouped separately from the complete oxidizers, with only one exception, ‘Desulfofrigus sapovorans’ (= [Desulfovibrio] sapovorans) (Devereux et al., 1989, 1990). In 1999, however, two incomplete sulfate reducers, Desulfofaba gelida and Desulfofaba hansenii, whose closest relatives were members of the Desulfofrigus group, were isolated. In 2001, two additional incompletely oxidizing sulfate reducers, Desulfovibrio hansenii and Desulfobulbus propionicus, were described that were affiliated with the Desulfofrigus group (Finster et al., 2001; Rees & Patel, 2001). The affiliation of incomplete oxidizers to the complete oxidizers is interesting, because the pathway used for degradation of the organic substrates differs markedly.

The completely oxidizing sulfate reducers use the classical β-oxidation pathway to degrade fatty acids (Janssen & Schink, 1995a, b). The oxidation of organic substrates by the incomplete oxidizer Desulfobulbus propionicus follows the reverse methylmalonyl-CoA pathway (Kremer & Hansen, 1988). Preliminary data indicate that Desulfovibrio hansenii and strain P2T use the same pathway as Desulfobulbus propionicus. Thus, despite the phylogenetic distance (Fig. 2), the pathway of propionate degradation seems to be shared among propionate-degrading sulfate reducers.

Taxonomic conclusions
We propose that strain P2T (= DSM 15249T = ATCC BAA-815T) represents a novel species of the genus Desulfofaba, Desulfofaba fastidiosa sp. nov. In addition, based on its close phylogenetic affiliation to Desulfofaba gelida (Fig. 2) and the phenotypic similarities, we propose to reclassify Desulfovibrio hansenii as Desulfofaba hansenii comb. nov. The description of the genus Desulfofaba must also be amended.

Emended description of the genus Desulfofaba
Knoblauch et al. 1999

The original description of this genus was provided by Knoblauch et al. (1999). Additionally, some species are able to produce inclusions of polyhydroxyalkanoates. The type species is Desulfofaba gelida.

Description of Desulfofaba hansenii comb. nov.

Basonym: Desulfofaba hansenii Finster et al. 2001.

The description of this taxon was provided by Finster et al. (2001). The type strain is P1T = DSM 12642T = ATCC 700811T.

Description of Desulfofaba fastidiosa sp. nov.

Desulfofaba fastidiosa (fas.ti.di.o’sa. L. fem. adj. fastidiosa fastidious, difficult to please, referring to the limited number of substrates used by the type strain).

Cells are curved, bean-shaped rods, 3–3.8 μm long and 0.8–1.0 μm wide when grown with sulfate, but longer when grown with thiosulfate. Cells are motile and have a single polar flagellum. Spores are not observed. Anaerobic growth with propionate, lactate or 1-propanol as electron donors and sulfate, sulfite or thiosulfate as electron acceptors. Growth is also possible by fermentation of lactate. The
pH range for growth is 6·0–7·75 (optimum 6·8–7·1). Temperature range for growth is 5–33 °C (optimum 28 °C). The DNA G+C content of the type strain is 48·8 mol%.

The type strain, P2T (= DSM 15249 T = ATCC BAA-815 T), was isolated from the sulfate–methane transition zone (1·5 m below sediment surface) of Aarhus Bay (Denmark).

ACKNOWLEDGEMENTS

This study was supported by SNF grant no. 51-00-0309.

REFERENCES

