Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensis are subjective synonyms

Susumu Asakawa† and Kazunari Nagaoka‡

Laboratory of Soil Microbiology, Kyushu National Agricultural Experiment Station, Nishigoshi, Kumamoto 861-1192, Japan

Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensis are subjective synonyms on the basis of phenotypic, genotypic and phylogenetic characteristics. Methanoculleus bourgensis must be the name of the united species because it is the type of the genus Methanoculleus.

The genus Methanoculleus currently includes seven species: Methanoculleus marisnigri, Methanoculleus bourgensis, Methanoculleus thermophilus, Methanoculleus olentangyi, Methanoculleus oldenburgensis, Methanoculleus palmolei and Methanoculleus chikugoensis (Maestrojúan et al., 1990; Romesser et al., 1979; Ollivier et al., 1986; Rivard & Smith, 1982; Corder et al., 1983; Blotevogel et al., 1991; Zellner et al., 1998; Dianou et al., 2001). In the course of the identification of Methanoculleus chikugoensis MG62T (Dianou et al., 2001), a DNA–DNA hybridization study revealed that Methanoculleus bourgensis MS2T, Methanoculleus olentangyi RC/ERT and Methanoculleus oldenburgensis CB-1T were genomically closely related (67–104 % relatedness to each other), though a similar close relatedness (66 %) between Methanoculleus bourgensis and Methanoculleus olentangyi had already been reported by Xun et al. (1989). We supplemented these results by examining some genotypic and phylogenetic features of the type strains and we now confirm the synonymy of these three species on the basis of these features and phenotypic characteristics already reported.

The 16S rDNA sequence of Methanoculleus oldenburgensis was determined, since it had not previously been available. The type strain, CB-1T (= DSM 6216T), was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), Braunschweig, Germany. Methods for DNA isolation, PCR amplification and sequencing of 16S rDNA were the same as described previously (Dianou et al., 2001). The sequence similarities of strain CB-1T to Methanoculleus bourgensis MS2T and Methanoculleus olentangyi RC/ERT and between strains MS2T and RC/ERT were respectively 97-1, 98-7 and 97-7 %, which was consistent with the DNA–DNA hybridization results mentioned above (Dianou et al., 2001).

These three strains seem to have almost the same phenotypic features: the cells are 1–2 μm in diameter, flagellation and motility are not observed (fimbriae-like structures have been reported in the case of Methanoculleus oldenburgensis CB-1T cells), H2/CO2 and formate are used as methanogenic substrates (some secondary alcohols are also used by Methanoculleus bourgensis MS2T and Methanoculleus olentangyi RC/ERT), acetate is required for growth and the optimum temperature, pH and NaCl concentration for growth are respectively about 40 °C (37–45 °C), near neutral (6–7–8 °C) and about 0·1 M (0·04–0·17 M) (Blotevogel et al., 1991; Ollivier et al., 1986; Corder et al., 1983; Maestrojúan et al., 1990; Zellner et al., 1990; Chong & Boone, 2001; see also Table 2 of Dianou et al., 2001). Some resemblances of whole-cell protein electrophoretic patterns, S-layer structures and polyamine compositions between Methanoculleus bourgensis MS2T and Methanoculleus olentangyi RC/ERT were also reported (Maestrojúan et al., 1990; Zellner et al., 1990).

The sole differentiating characteristic is the G+C content of DNA. The G+C contents of Methanoculleus bourgensis MS2T, Methanoculleus olentangyi RC/ERT and Methanoculleus oldenburgensis CB-1T were respectively originally reported to be 59, 54.4 and 48.6 mol%, the first two being determined by the buoyant density method and the latter by thermal denaturation. The range is 10 mol%, which seems too large for members of a single species. Therefore, we measured the G+C contents of DNA from these three strains by the same method (HPLC), as described previously (Dianou et al., 2001), using a Hitachi 683-50 HPLC system. The values for Methanoculleus bourgensis MS2T, Methanoculleus

The genus *Methanoculleus* currently includes seven species: *Methanoculleus marisnigri*, *Methanoculleus bourgensis*, *Methanoculleus thermophilus*, *Methanoculleus olentangyi*, *Methanoculleus oldenburgensis*, *Methanoculleus palmolei* and *Methanoculleus chikugoensis* (Maestrojúan et al., 1990; Romesser et al., 1979; Ollivier et al., 1986; Rivard & Smith, 1982; Corder et al., 1983; Blotevogel et al., 1991; Zellner et al., 1998; Dianou et al., 2001). In the course of the identification of *Methanoculleus chikugoensis* MG62T (Dianou et al., 2001), a DNA–DNA hybridization study revealed that *Methanoculleus bourgensis* MS2T, *Methanoculleus olentangyi* RC/ERT and *Methanoculleus oldenburgensis* CB-1T were genomically closely related (67–104% relatedness to each other), though a similar close relatedness (66%) between *Methanoculleus bourgensis* and *Methanoculleus olentangyi* had already been reported by Xun et al. (1989). We supplemented these results by examining some genotypic and phylogenetic features of the type strains and we now confirm the synonymy of these three species on the basis of these features and phenotypic characteristics already reported.

The 16S rDNA sequence of *Methanoculleus oldenburgensis* was determined, since it had not previously been available. The type strain, CB-1T (= DSM 6216T), was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), Braunschweig, Germany. Methods for DNA isolation, PCR amplification and sequencing of 16S rDNA were the same as described previously (Dianou et al., 2001). The sequence similarities of strain CB-1T to *Methanoculleus bourgensis* MS2T and *Methanoculleus olentangyi* RC/ERT and between strains MS2T and RC/ERT were respectively 97.1, 98.7 and 97.7%, which was consistent with the DNA–DNA hybridization results mentioned above (Dianou et al., 2001).

These three strains seem to have almost the same phenotypic features: the cells are 1–2 μm in diameter, flagellation and motility are not observed (fimbriae-like structures have been reported in the case of *Methanoculleus oldenburgensis* CB-1T cells), H2/CO2 and formate are used as methanogenic substrates (some secondary alcohols are also used by *Methanoculleus bourgensis* MS2T and *Methanoculleus olentangyi* RC/ERT), acetate is required for growth and the optimum temperature, pH and NaCl concentration for growth are respectively about 40 °C (37–45 °C), near neutral (6–7–8 °C) and about 0·1 M (0·04–0·17 M) (Blotevogel et al., 1991; Ollivier et al., 1986; Corder et al., 1983; Maestrojúan et al., 1990; Zellner et al., 1990; Chong & Boone, 2001; see also Table 2 of Dianou et al., 2001). Some resemblances of whole-cell protein electrophoretic patterns, S-layer structures and polyamine compositions between *Methanoculleus bourgensis* MS2T and *Methanoculleus olentangyi* RC/ERT were also reported (Maestrojúan et al., 1990; Zellner et al., 1990).

The sole differentiating characteristic is the G+C content of DNA. The G+C contents of *Methanoculleus bourgensis* MS2T, *Methanoculleus olentangyi* RC/ERT and *Methanoculleus oldenburgensis* CB-1T were respectively originally reported to be 59, 54.4 and 48.6 mol%, the first two being determined by the buoyant density method and the latter by thermal denaturation. The range is 10 mol%, which seems too large for members of a single species. Therefore, we measured the G+C contents of DNA from these three strains by the same method (HPLC), as described previously (Dianou et al., 2001), using a Hitachi 683-50 HPLC system. The values for *Methanoculleus bourgensis* MS2T, *Methanoculleus*
olentangyi RC/ERT and \textit{Methanoculleus oldenburgensis} CB-1T were respectively 60.5 ± 0.0, 61.1 ± 0.3 and 60.2 ± 0.2 mol\% (mean ± SD, n = 3).

The similarities of phenotypic, genotypic and phylogenetic characteristics described above indicate that \textit{Methanoculleus bourgensis} (Ollivier \textit{et al.} 1986) Maestrojua´ n \textit{et al.} 1990, \textit{Methanoculleus olentangyi} (Corder \textit{et al.} 1988) Maestrojua´n \textit{et al.} 1990 and \textit{Methanoculleus oldenburgensis} Blotevogel \textit{et al.} 1998 are subjective synonyms. Rule 15 of the Bacteriological Code (Lapage \textit{et al.}, 1992) indicates that the type of a taxon is permanently associated with that taxon; therefore, since \textit{Methanoculleus bourgensis} is the type of the genus \textit{Methanoculleus} Maestrojua´n \textit{et al.} 1990, the name \textit{Methanoculleus bourgensis} must be retained for the united species.

The physiological variance of strain CB-1, such as its slightly higher temperature for optimum growth, might indicate its affiliation to a subspecies within the united species. However, further information concerning the phenotypic characters of strain CB-1 and the other strains will be needed for the taxonomic description of strain CB-1.

Emended description of \textit{Methanoculleus bourgensis} (Ollivier \textit{et al.} 1986) Maestrojua´n \textit{et al.} 1990

The descriptions of the genus \textit{Methanoculleus} and the species \textit{Methanoculleus bourgensis} have been given by Maestrojua´n \textit{et al.} (1990). Strains RC/ER and CB-1, previously the type strains of \textit{Methanoculleus olentangyi} and \textit{Methanoculleus oldenburgensis}, respectively, are reference strains of the species \textit{Methanoculleus bourgensis}. The type strain is strain MS2 T (= ATCC 43281T = DSM 3045T).

Acknowledgements

We thank Yu. Koga of the University of Occupational and Environmental Health, Japan, Y. Kamagata of the National Institute of Advanced Industrial Sciences and Technology and T. Ito of the Japan Collection of Microorganisms, RIKEN, for their helpful advice and Y. Hamahira of Hitachi Instruments Service Co., Ltd for his help in operating the HPLC apparatus.

References

