Actinomyces oricola sp. nov., from a human dental abscess

Val Hall,¹ Matthew D. Collins,² Roger A. Hutson,² Elisabeth Ingaræs,³ Enevold Falsen² and Brian I. Duerden¹

¹Anaerobe Reference Unit, PHLS, University Hospital of Wales, Cardiff CF14 4XW, UK
²School of Food Biosciences, University of Reading, Reading, UK
³Culture Collection, Department of Clinical Bacteriology, University of Göteborg, Göteborg, Sweden

A previously undescribed Actinomyces-like bacterium was isolated from a human dental abscess. Based on its cellular morphology and the results of biochemical testing the organism was tentatively identified as a member of the genus Actinomyces, but it did not correspond to any currently recognized species of this genus. Comparative 16S rRNA gene sequencing studies showed the bacterium represents a hitherto unknown subline within the genus Actinomyces, clustering within a group of species, which includes Actinomyces bovis, the type species of the genus. Based on biochemical and molecular phylogenetic evidence, it is proposed that the unknown organism recovered from a dental abscess be classified as a new species, Actinomyces oricola sp. nov. The type strain of Actinomyces oricola is R5292T (=CCUG 46090T = CIP 107639T).

The genus Actinomyces encompasses a taxonomically heterogeneous collection of anaerobic and aerotolerant, non-spore-forming, non-acid-fast, Gram-positive rod-shaped organisms within the Actinobacteria. In the last decade the taxonomy of this complex group has undergone much improvement, in part due to an increased interest in the identification of these organisms, particularly from the clinical environment (Funke et al., 1997b, 1999, 2001). The use of molecular taxonomic methods [such as 16S rRNA sequencing, amplified 16S rDNA restriction analysis (ARDRA) and protein profiling] have done much to aid the identification of Actinomyces-like organisms and the recognition of novel species (e.g. Collins et al., 2000; Funke et al., 1994, 1997a; Hall et al., 1999, 2001; Lawson et al., 2001; Nikolaitchouk et al., 2000; Pascual et al., 1997; Wüst et al., 1995). However, despite marked improvements in the identification of many Actinomyces-like organisms, especially from human sources, it is evident that many taxonomically problematic organisms remain (Hall et al., 1999, 2001). It is important that atypical or unusual Actinomyces-like organisms are characterized to increase knowledge of their natural habitats and possible clinical associations and prevalence. In the course of an ongoing study exploring the diversity of Actinomyces-like organisms from human sources, we have characterized an organism, which although phenotypically consistent with the genus Actinomyces, does not appear to correspond to any recognized species. Based on the results of a polyphasic taxonomic study, we describe yet another new species of the Actinomyces genus, Actinomyces oricola sp. nov.

The bacterial isolate R5292T was isolated from a dental abscess of a male patient in Bury and was referred to the Anaerobe Reference Unit, PHLS, University Hospital of Wales, for identification. No further clinical information is known. For biochemical testing the strain was cultured on Columbia agar (Difco) supplemented with 5% horse blood at 37°C, incubated anaerobically. The strain was biochemically characterized by using both conventional tests (Phillips, 1976) and the commercially available API rapid ID32Strep, API rapid ID32A and API Coryne systems, according to the manufacturer’s instructions (API bioMérieux). Volatile and non-volatile end products of glucose metabolism were detected by gas–liquid chromatography (Holdeman et al., 1977). PAGE analysis of whole-cell proteins was performed as described by Pot et al. (1994). Long-chain cellular fatty acids were examined using the MIDI system. ARDRAs were performed using HaeIII and HpaII as described previously (Hall et al., 1999). The 16S rDNA of the isolate was amplified by PCR and directly sequenced using a Taq dye-Deoxy terminator cycle sequencing kit (Applied Biosystems) and an automatic DNA sequencer (model 373A; Applied Biosystems). Phylogenetic analyses were performed as described by Collins et al. (2000).

Abbreviations: ARDRA, amplified 16S rDNA restriction analysis; CCUG, Culture Collection of the University of Göteborg; CIP, Collection of Bacterial Strains of Institut Pasteur.

The GenBank accession number for the 16S rRNA sequence of CCUG 46090T is AJ507295.
The unidentified organism consisted of Gram-positive, rod-shaped cells, some of which displayed branching, and filaments were observed. Cells were non-acid-fast, non-spore-forming and non-motile. Colonies after 48 h anaerobic incubation on Fastidious Anaerobe Agar with 5% horse blood were pin-point, breadcrumb-like, white and non-haemolytic. The organism was catalase-negative and facultatively anaerobic, but grew best under anaerobic conditions. The end products of glucose metabolism were acetic acid, lactic acid and succinic acid. Using conventional biochemical testing, the organism produced acid from amygdalin (weak), cellobiose, fructose, glucose, raffinose (weak), salicin, sucrose and trehalose, but not from arabinose or lactose. The organism hydrolysed aesculin, but failed to hydrolyse gelatin or starch. It was lipase-, lecithinase- and urease-negative, and did not produce indole. Employing commercial API biochemical kits the biochemical reactions of the organism were consistent with its tentative assignment to the genus *Actinomyces*. Comparative analysis of whole-cell protein profiles showed the unknown organism was distinct from all currently defined species of this genus (data not shown). A dendrogram based on a subset of species depicting comparative protein analysis of the unidentified species and its closest relatives is shown in Fig. 1. *Actinomyces howellii* (CCUG 32757\(^T\), CCUG 35943) displayed the closest similarity to the unidentified clinical organism, joining the latter at about 73% similarity. Other species displayed much lower levels of similarity (Fig. 1). To further investigate the genetic relatedness of the unidentified organism to *Actinomyces* species, ARDRA was performed. The unknown organism produced a unique 16S rDNA restriction pattern with HaeIII and HpalII (profile 019/017) and was distinct from the profiles derived from the analysis of over 400 *Actinomyces* strains (Hall et al., 2001).

To determine the phylogenetic relationships of the unidentified organism, its almost complete 16S rRNA gene sequence (>1400 nt) was determined. Sequence database searches confirmed the unknown isolate was most closely related to species of the genus *Actinomyces*. Highest sequence similarity values were shown with *Actinomyces naeslundii* NCTC 10301\(^T\) (94.2%), *Actinomyces bowdani* CCUG 37421\(^T\) (94.0%), *Actinomyces viscosus* NCTC 10951\(^T\) (93.9%), *Actinomyces israelii* CIP 103259\(^T\) (93.9%), *Actinomyces howellii* NCTC 11638\(^T\) (93.7%), *Actinomyces denticolens* NCTC 11490\(^T\) (93.7%) and phylogenetically related organisms. Treeing analysis further demonstrated the placement of the unidentified bacterium within the genus *Actinomyces*, with the novel

The cellular morphology and general physiological and biochemical reactions of the organism were consistent with its tentative assignment to the genus *Actinomyces*, but it did not appear to correspond to any recognized species of this genus. An examination of the long-chain cellular fatty acids of the unidentified organism revealed the presence of straight-chain saturated and monounsaturated acids: C12:0 (0.7%), C14:0 (1.1%), C16:0 (44.0%), C16:1 (2.3%), C18:0 (14%), C18:1 cis9 (37%) and C20:1 cis11 (0.9%). This fatty acid composition reinforces the relationship of the unknown organism to the genus *Actinomyces*. To investigate the possible association of the unknown bacterium with *Actinomyces* species, its whole-cell protein profile was compared with those of known *Actinomyces* species. Comparative analysis of whole-cell protein profiles showed the unknown organism was distinct from all currently defined species of this genus (data not shown). A dendrogram based on a subset of species depicting comparative protein analysis of the unidentified species and its closest relatives is shown in Fig. 1. *Actinomyces howellii* (CCUG 32757\(^T\), CCUG 35943) displayed the closest similarity to the unidentified clinical organism, joining the latter at about 73% similarity. Other species displayed much lower levels of similarity (Fig. 1). To further investigate the genetic relatedness of the unidentified organism to *Actinomyces* species, ARDRA was performed. The unknown organism produced a unique 16S rDNA restriction pattern with HaeIII and HpalII (profile 019/017) and was distinct from the profiles derived from the analysis of over 400 *Actinomyces* strains (Hall et al., 2001).

To determine the phylogenetic relationships of the unidentified organism, its almost complete 16S rRNA gene sequence (>1400 nt) was determined. Sequence database searches confirmed the unknown isolate was most closely related to species of the genus *Actinomyces*. Highest sequence similarity values were shown with *Actinomyces naeslundii* NCTC 10301\(^T\) (94.2%), *Actinomyces bowdani* CCUG 37421\(^T\) (94.0%), *Actinomyces viscosus* NCTC 10951\(^T\) (93.9%), *Actinomyces israelii* CIP 103259\(^T\) (93.9%), *Actinomyces howellii* NCTC 11638\(^T\) (93.7%), *Actinomyces denticolens* NCTC 11490\(^T\) (93.7%) and phylogenetically related organisms. Treeing analysis further demonstrated the placement of the unidentified bacterium within the genus *Actinomyces*, with the novel

![Fig. 1. Similarity dendrogram based on whole-cell protein patterns of *Actinomyces oricola* sp. nov. and closely related species. Levels of correlation are expressed as percentages of similarity for convenience.](image-url)
bacterium forming a distinct subline within a small sub-cluster of species which includes Actinomyces bovis, the type species of the genus Actinomyces (Fig. 2).

Based upon both phenotypic and molecular phylogenetic studies it is clear that the unidentified Gram-positive, catalase-negative, rod-shaped organism recovered from a dental abscess represents a hitherto unknown Actinomyces species from human sources. Phylogenetically, the unknown bacterium forms a distinct subline within the Actinomyces genus and displays an affinity with a cluster of species, including Actinomyces bovis, Actinomyces catuli, Actinomyces naeslundii, Actinomyces bowdienii, Actinomyces viscosus, Actinomyces israelii, Actinomyces gerencseriae, Actinomyces howellii, Actinomyces denticolens, Actinomyces radicidentis, Actinomyces slackii and Actinomyces urogenitalis. Bootstrap resampling, however, showed the unknown bacterium did not share a statistically significant association with any individual member of this rRNA subcluster. Sequence divergence values of approximately 5–6–7–6.6% reinforced the separateness of the unidentified oral bacterium from all currently recognized members of this subcluster. Although there is no precise correlation between percentage 16S rRNA sequence divergence values and species delineation, it is now generally accepted that organisms displaying values of 3% or more do not belong to the same species (Stackebrandt & Goebel, 1994). The observed >5% sequence divergence between the unidentified clinical isolate and all currently defined Actinomyces species is therefore consistent with separate species status.

Strong support for the separateness of the unknown bacterium also comes from phenotypic evidence. In particular, comparative whole-cell protein profiling shows the unidentified organism is distinct from all defined Actinomyces species. Furthermore the unidentified bacterium possesses a very characteristic biochemical profile, which serves to distinguish it from all currently described Actinomyces species. The unidentified organism can be readily distinguished from its nearest phylogenetic relatives using commercial API Rapid ID 32Strep and API Rapid ID 32A kits. In particular, the novel organism differs markedly from Actinomyces bowdienii, Actinomyces denticolens, Actinomyces israelii, Actinomyces howellii, Actinomyces naeslundii, Actinomyces radicidentis, Actinomyces slackii, Actinomyces viscosus and Actinomyces urogenitalis in producing acid from a far smaller range of sugars. In addition, the unknown organism can be readily distinguished from Actinomyces bovis by producing α-galactosidase and α-glucosidase. By contrast, Actinomyces bovis gives negative results for these tests.

Therefore, based on the distinct phenotypic characteristics of the unidentified rod-shaped bacterium and molecular phylogenetic evidence, we consider it warrants classification as a new species of the Actinomyces genus, for which the name Actinomyces oricola sp. nov. is proposed. Although only a single strain of Actinomyces oricola is currently known, we consider the formal description of this species together with biochemical criteria to aid its identification, will in the future facilitate its recognition in the routine laboratory, thereby permitting the recovery of additional strains and an evaluation of its distribution, clinical prevalence and possible significance. Tests which are useful in distinguishing Actinomyces oricola from its nearest phylogenetic relatives are shown in Table 1.

Description of Actinomyces oricola sp. nov.

Actinomyces oricola (o.ri’co.la. L. n. os, oris mouth; L. masc. suffix *cola* inhabitant of; N.L. masc. *n.* oricola inhabitant of the mouth).

Gram-positive, rod-shaped cells, some of which display branching and filaments may be observed. Cells are non-acid-fast, non-spore-forming and non-motile. Colonies after 48 h anaerobic incubation on Fastidious Anaerobe Agar with 5% horse blood are pin-point, breadcrumb-like, white and non-phaemolytic. Catalase-negative and facultatively anaerobic, but grows best under anaerobic conditions. The end products of glucose metabolism are acetic, lactic and succinic acids. Using conventional tests, acid is produced from amydalin (weak), cellulbiose, fructose, glucose, raffinose (weak), salicin, sucrose and trehalose, but not from arabinose or lactose. Aesculin is hydrolysed, but gelatin and starch are not. Lipase, lecithinase and urease are not detected and indole is not produced. Using commercial API systems, acid is produced from glucose, but not from D-arabitol, L-arabinose, cyclodextrin, glycogen, lactose, mannitol, melibiose, melezitose, methyl-β-D-glucopyranoside, pullulan, D-ribose, sorbitol, tagatose, trehalose or D-xylose. Acid may or may not be produced from maltose, sucrose and raffinose,

![Fig. 2. Unrooted tree showing the phylogenetic relationships of *Actinomyces oricola* sp. nov. and other species of the genus *Actinomyces* and related taxa. The tree constructed using the neighbour-joining method was based on a comparison of approximately 1327 nt. Bootstrap values, expressed as a percentage of 500 replications, are given at branching points.](http://ij.sgmjournals.org)
Table 1. Tests useful in distinguishing *Actinomyces oricola* sp. nov. from its nearest relatives using the API Rapid ID32Strep system

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid from:</td>
<td></td>
</tr>
<tr>
<td>D-Arabinol</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>V</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>Melibiose</td>
<td>V</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>Melzitose</td>
<td>+</td>
<td>V</td>
<td>−</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Trehalose</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>V</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MBDG</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Activity for:</td>
<td></td>
</tr>
<tr>
<td>ADH</td>
<td>−</td>
<td>−</td>
<td>V</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>APPA</td>
<td>+</td>
<td>V</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β-Gal</td>
<td>+</td>
</tr>
</tbody>
</table>

depending on the test system used. Aesculin is hydrolysed, but gelatin and hippurate are not. Indole is not produced and nitrates are not reduced. Alanine arylamidase, alanine phenylalanine proline arylamidase, arginine arylamidase, α-galactosidase, α-glucosidase, β-glucosidase, glycine arylamidase, proline arylamidase, pyrazinamidase, leucyl glycine arylamidase, leucine arylamidase, phenyl alanine arylamidase and tyrosine arylamidase are detected. Activity for alkaline phosphatase and β-galactosidase may or may not be detected, depending on the test system used. No activity is detected for α-arabinosidase, arginine dihydrolyase, α-fucosidase, β-galactosidase-6-phosphate, glutamic acid decarboxylase, glutamyl glutamic acid arylamidase, β-glucuronidase, glycol tryptophane arylamidase, β-mannosidase, pyroglutamic acid arylamidase, N-acetyl-β-glucosaminidase, histidine arylamidase, serine arylamidase or urease. Voges–Proskauer-negative. The major long-chain fatty acids are C16:0, C18:0 and C18:1ω9c. Isolated from human dental abscess. Habitat is not known. Type strain is R5292T (=CCUG 46090T = CIP 107639T).

Acknowledgements

We are grateful to Hans Trüper for advice on the species name.

References

