Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney

Satoshi Nakagawa,1 Ken Takai,2 Koki Horikoshi2 and Yoshihiko Sako1

1Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
2Subground Animalcule Retrieval (SUGAR) Project, Frontier Research System for Extremophiles, Japan Marine Science and Technology Center, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan

A novel thermophilic, hydrogen-oxidizing bacterium, designated 29WT, was isolated from a deep-sea hydrothermal vent chimney sample collected from the Suiyo Seamount in the Izu-Bonin Arc, Japan, at a depth of 1385 m. The cells were coccoid (0.9–1.0 μm in diameter) and straight rods (2.3–2.7 μm long) under static and agitated culture conditions, respectively. The new isolate was an obligate chemolithoautotroph growing by respiratory nitrate reduction with H2, forming N2 as a final product. A very low concentration of O2 (optimum 0.6–0.8 %, v/v) was also used as an alternative electron acceptor while reduced sulfur compounds did not serve as electron donors. Anoxic hydrogen-oxidizing growth with nitrate was observed between 50 and 72.5 °C (optimum 70 °C; 40 min doubling time), pH 5.5 and 7.6 (optimum pH 7.2), and in the presence of 1.5 and 5.0 % NaCl (optimum 2.5 %). The G+C content of the genomic DNA was 37.3 mol%. Phylogenetic analysis based on 16S rDNA sequences indicated that the isolate was a member of the recently described genus Persephonella in a potential new family within the order Aquificales. On the basis of the physiological and molecular properties of the new isolate, the name Persephonella hydrogeniphila sp. nov. is proposed. The type strain is strain 29WT (=JCM 11663T=DSM 15103T).

Thermophilic hydrogen- and/or sulfur-oxidizing bacteria of the order Aquificales are widely distributed in diverse hot environments such as terrestrial geothermal fields, shallow- and deep-sea hydrothermal vent systems and deep subsurface hot aquifer environments (Kawasumi et al., 1984; Kryukov et al., 1984; Huber et al., 1992, 1998; Shima & Suzuki, 1993; Hugenholtz et al., 1998; L’Haridon et al., 1998; Reysenbach et al., 2000a, b, c; Marteinsson et al., 2001; Takacs et al., 2001; Takai et al., 2001, 2002). Members of the Aquificales are thought to have an impact on biogeochemical processes in these ecosystems (Kristjansson et al., 1985; Harmsen et al., 1997; Götz et al., 2002). In addition, the energy conversion systems and metabolism of Aquificales are interesting in relation to their antagonistic evolutionary traits inferred from rRNA gene trees (Burgraf et al., 1992) and from comparison of the genome sequences (Deckert et al., 1998).

A common property displayed by all of the cultivated strains of Aquificales is obligately or facultatively chemolithoautotrophic growth by oxidation of H2 or reduced sulfur compounds. The most recently constructed phylogenetic tree including the cultivated strains and environmental rDNA clones clearly indicated three distinct lineages (probably classified into Desulfurobacteriaeae, Aquificaeae and Hydrogenothermaceae) within the order Aquificales (Takai et al., 2002; Eder & Huber, 2002). The relatives of Desulfurobacterium are strictly anaerobic H2-oxidizing autotrophs using elemental sulfur, thiosulfate, polysulfide, sulfite or nitrate as electron acceptors (L’Haridon et al., 1998; Huber et al., 2002). Members of the genera Hydrogenobaculum (Shima & Suzuki, 1993; Stöhr et al., 2001), Aquifex (Huber et al., 1992), Thermocrinis (Huber et al., 1998) and Hydrogenobacter (Kawasumi et al., 1984) have been the most extensively studied. Although Thermocrinis ruber (Huber et al., 1998) is capable of chemo-organotrophic growth and Hydrogenobacter subterraneus (Takai et al., 2001) is an obligate aerobic heterotroph, all other members are strict chemolithoautotrophs using H2 and reduced sulfur compounds as electron donors, and O2 and nitrate as electron acceptors.
The last lineage largely consisted of a number of previously uncultivated environmental rDNA clones obtained from global terrestrial hot-spring environments such as in Yellowstone National Park (Hugenholtz et al., 1998; Reysenbach et al., 2000a), Iceland (Skirnisdottir et al., 2000; Takacs et al., 2001) and Japan (Yamamoto et al., 1998), and in subterranean hot springs (Marteinsson et al., 2001), and even in deep-sea hydrothermal vent systems (Reysenbach et al., 2000b, c). Recently, however, several representative strains of this lineage such as *Hydrogenothermus* (Stöhr et al., 2001), *Persephonella* (Reysenbach et al., 2000a; Götz et al., 2002) and a potentially new genus of strains (Takai et al., 2002) have been successfully isolated from shallow and deep marine hydrothermal vent environments and from a subsurface hot aquifer environment. Based on their characterization, the newly identified lineage of *Aquificales* shared similar physiological and metabolic properties with the members of the family *Aquificaceae*. However, many phenotypes of bacteria within this lineage remain uncultivated and unidentified, and further exploration of uncultivated members will provide important insights. In this study, we sought to cultivate anoxic H₂-oxidizing thermophiles using nitrate as an electron acceptor from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc, Japan.

Sample collection, enrichment and purification

Samples from black smoker vents were obtained from the hydrothermal field at the Suiyo Seamount in the Izu-Bonin Arc, Japan (28° 34‘287’’ N, 140° 38’663’’ E), at a depth of 1385 m, by means of the manned submersible *Shinkai 2000* in a dive (dive no. 1237) performed in November 2000. A bulk of chimney having 310.8 °C of vent emission was brought to the sea surface in a sample box supplied with the submersible and immediately subsampled into four different parts (top part, surface layer, inside structure and vent surface) as described by Takai et al. (2001). The chimney was mainly formed from anhydrite (top part), barite (surface layer), pyrite and chalcopyrite (inside structure), and pyrite or chalcopyrite crystals were observed at the passage of hot fluid (vent surface). Each of the subsamples (approx. 10 g) was suspended with 20 ml sterilized MJ synthetic seawater (Sako et al., 1996) containing 0.05 % (w/v) sodium sulfide in a 100 ml glass bottle (Schott Glaswerke) tightly sealed with a butyl rubber cap under a N₂ atmosphere. These suspended portions of the subsamples were used to inoculate a series of media including HNW medium (described below) on board.

The enrichment was performed in test tubes (Pyrex; 180 × 18 mm) containing 5 ml of the medium with 80 % H₂ + 20 % CO₂ (300 kPa) tightly sealed with butyl rubber caps and the cultures were incubated at 70 and 85 °C. The tubes of HNW medium inoculated only with a subsample of surface layer became turbid after 1 day incubation at 70 °C and the other tubes did not provide positive enrichments after 5 days incubation at 70 and 85 °C. The enrichment cultures grown at 70 °C contained highly motile cocci. To obtain a pure culture of cocci grown at 70 °C, an extinction-to-dilution method was employed and repeated at least five times. The first pure culture was designated strain 29W = DSM 15103T (= JCM 11663T) and investigated in detail. The purity was confirmed routinely by microscopic examination and by repeated partial sequencing of the 16S rRNA gene using several PCR primers.

Morphology

Cells were routinely observed with a differential interference microscope (UXF; Nikon). Negative staining of cells for electron microscopy was done with 2 % (v/v) phosphotungstic acid. The cells grown under static culture were Gram-negative cocci about 0.9–1.0 μm in diameter (Fig. 1a). Despite a body of reports on the isolation and characterization of hydrogen-oxidizing thermophiles within the order *Aquificales* including *Persephonella* species (Kawasumi et al., 1984; Huber et al., 1992, 1998; Shima & Suzuki, 1993; L’Haridon et al., 1998; Takai et al., 2001, 2002; Götz et al., 2002; Huber et al., 2002), the coccolith morphology is first described here. When grown with agitation, each cell exhibited a straight rod shape with a mean length of 2.3–2.7 μm and a width of approximately 0.4–0.5 μm (Fig. 1b). Both coccoid and rod types of the cells appeared to have a single polar flagellum as observed.

Fig. 1. Electron micrographs of negatively stained *Persephonella hydrogeniphila* cells in the exponential growth phase. (a) Under static culture conditions; (b) under agitated culture conditions. Bars, 1 μm.
by electron microscopy and to be highly motile by observation using light microscopy. Pili-like filaments and internal stacked membranes reported in *Persephonella marina* (Götz et al., 2002) were not observed in thin sections (data not shown). Cells occurred singly or in pairs in all phases of growth and no sporulation was observed.

Growth characteristics

The new isolate was routinely cultivated in HNW medium, which contained 1 g NaNO₃, 1 g NaHCO₃, 0.1 mg Na₂WO₄, 2H₂O, 0.5 g Na₃S.9H₂O and 10 ml trace vitamin solution (Balch et al., 1979) per litre of DMJ synthetic seawater (2/3-fold-diluted MJ synthetic seawater; Sako et al., 1996). To prepare HNW medium, all the components of DMJ seawater were dissolved in 1 litre distilled deionized water, and the pH was adjusted to around 7.0 with NaOH at room temperature prior to autoclaving, unless otherwise noted. After autoclaving, filter-sterilized NaNO₃ solution (100 g l⁻¹), NaHCO₃ solution (100 g l⁻¹), Na₂S solution (100 g l⁻¹; pH 7.5) and trace vitamin solution were added. The tubes were then tightly sealed with butyl rubber stoppers under a gas phase of 80 % H₂ + 20 % CO₂ (300 kPa).

Growth of the new isolate under varying conditions was determined by direct cell counts after staining with 4',6-diamidino-2-phenylindole (DAPI) (Porter & Feig, 1980) using a Nikon Eclipse E800 microscope equipped with colour chilled 3 CCD camera system (C5810; Hamamatsu Hokutenikusu). To determine the temperature, pH and NaCl range for growth, duplicate cultures were grown in 100 ml glass bottles (Schott Glaswerke) containing 20 ml HNW medium. Growth of the isolate. For the test of the alternative energy sources, none of these electron acceptors could support growth of the new isolate was a hydrogen-oxidizing chemolithoautotroph preferring anaerobic denitrifying growth to microaerobic growth.

In an attempt to examine the alternative electron acceptors which could support growth, 0·1 % (w/v) NaNO₃, Na₂S₂O₃.5H₂O, Na₂S₂O₆.2H₂O and Na₂SO₃, 3 % (w/v) S⁰ and 100 mM ferrihydrite were tested in place of nitrate in HNW medium. At the time of analysing ferrihydrite as electron acceptor, Na₂S was omitted from the medium. None of the electron acceptors could support growth. For the test of the alternative energy sources, 0·1 % (w/v) Na₂S₂O₃, 3 % (w/v) S⁰ and organic substrates (described below) were used instead of H₂ in HNW medium under a gas phase of 80 % N₂ + 20 % CO₂ (300 kPa). This test was also conducted under a gas phase of 80 % N₂ + 19 % CO₂ + 1 % O₂ (300 kPa) in HNW medium without NaNO₃ and Na₂S. The isolate could not utilize any of these alternative energy sources. To our knowledge, the isolate is the first example of a hydrogen-dependent, facultatively anaerobic, and chemolithoautotrophic thermophile isolated from deep-sea hydrothermal environments.

When growth of the new isolate was tested in HNW medium (nitrate provided as a sole electron acceptor) in the absence of NaHCO₃, no growth was observed at 70 °C even under 80 % H₂ + 20 % CO₂ (300 kPa). The results suggested that bicarbonate was the preferred carbon source for the autotrophic growth of the isolate as observed in a mesophilic hydrogen-oxidizer, *Ralstonia eutropha* (Repaske et al., 1971).

In an attempt to examine organotrophic growth of 29WT, experiments were conducted using HNW medium replacing NaNO₃ and CO₂ with various organic carbon sources. Each of the following substrates was added at concentrations of 0·01 and 0·1 % (w/v): L-cystine, L-phenylalanine, L-proline, Casamino acids, D-(+)-glucose, lactose, maltose,
chitin, starch, cellulose, formate, acetate, citrate, pyruvate, propionate, 2-propanol, methanol, tryptone peptone (Difco) and yeast extract (Difco). Two gas phases (100 % H₂ and 80 % N₂ + 20 % CO₂; 300 kPa) were used. These tests were run in duplicate. The isolate was unable to grow under any of the organotrophic conditions tested in this study.

Cellular fatty acid composition

Cellular fatty acid composition was analysed using cells grown in HNW medium at 70 °C with agitation in the late-exponential growth phase. Cellular fatty acid composition analysis was performed at the NCIMB Japan Corporation, Shizuoka, Japan. Fatty acids were converted to methyl esters by treatment with anhydrous methanolic HCl. Fatty acid methyl esters (FAMEs) were analysed by GC using a non-polar capillary column and flame-ionization detection. The major cellular fatty acids were C₁₂₀₁₁ (40-8 %), C₁₈₀ (24-7 %), C₁₈₁ (23-8 %) and C₁₆₀ (4-2 %). The presence of C₁₈₀ and C₂₀₁ as the major components is a common feature of members of the order Aquificales. The percentages of each fatty acid of the isolate are particularly similar to those of *Persephonella guaymasensis* and *Hydrogenothermus marinus* (Stöhr et al., 2001; Götz et al., 2002). However, the new isolate can be distinguished by the presence of a relatively high amount of C₁₆₀.

Isolation and base composition of DNA

Genomic DNA was prepared as described by Lauerer et al. (1986). The G + C content (mol%) of the genomic DNA was determined by direct analysis of the deoxyribonucleotides using HPLC with a DNA-GC kit (Yamasa Shouyu) after digestion of the DNA with nuclease P1 (Tamaoka & Komagata, 1984). The G + C content of the genomic DNA of strain 29W₁ was found to be 37-3 mol%, which was similar to that of *Persephonella* species (Table 1).

Phylogenetic analyses

The 16S rRNA gene (rDNA) was amplified by PCR using Eubac 27F and 1492R primers (DeLong, 1992). The sequence of the 1.5 kb PCR product was directly determined in both strands using the dideoxyribonucleotide chain-termination method with the ABI 373A DNA sequencer (Applied Biosystems). The almost complete sequence (1506 bp) of the 16S rDNA of strain 29W₁ has been deposited in the DDBJ/EMBL/GenBank nucleotide sequence databases under accession number AB086419. In order to determine the phylogenetic position of the isolate, the sequence was manually aligned with a subset of 16S rDNA sequences obtained from the DNA Database of Japan (DDBJ) and the Ribosomal Database Project II (RDP-II) (Maidak et al., 2001) by using CLUSTAL X (Thompson et al., 1997). Phylogenetic analyses were restricted to nucleotide positions that were unambiguously alignable in all sequences (Takai & Horikoshi, 1999; Takai & Sako, 1999). Neighbour-joining analysis (Saitou & Nei, 1987) of 914 bases of sequence from each organism was accomplished using CLUSTAL X software. Bootstrap analysis was used for 1000 trial replications to provide confidence estimates for the phylogenetic tree topologies. The phylogenetic tree demonstrated that the new isolate was a member of the genus *Persephonella* (Fig. 2). However, 16S rDNA sequence similarities between strain 29W₁ and *P. guaymasensis*, *P. marina* and *Aquificales* strain CIR30126 were 95-6, 95-0 and 96-7 %, respectively. These similarity values indicated that the new isolate was a potentially new species of the

Table 1. Comparison of properties of Persephonella hydrogeniphila sp. nov. and related species

Strains (source): 1, *Persephonella hydrogeniphila* 29W₁ (this study); 2, *Persephonella marina* EX-H₁ (Götz et al., 2002); 3, *Persephonella guaymasensis* EX-H₂ (Götz et al., 2002); 4, *Aquifex pyrophilus* Köl5a₁ (Huber et al., 1992); 5, *Hydrogenothermus marinus* VM₁ (Stöhr et al., 2001). ND, No data.

<table>
<thead>
<tr>
<th>Character</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range (°C)</td>
<td>50–72-5</td>
<td>55–90</td>
<td>60–80</td>
<td>67–95</td>
<td>45–80</td>
</tr>
<tr>
<td>Temperature optimum (°C)</td>
<td>70</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>65</td>
</tr>
<tr>
<td>pH range</td>
<td>5-5-7-6</td>
<td>4–7-7-5</td>
<td>4–7-7-5</td>
<td>5–4-7-5</td>
<td>5–0-7-0</td>
</tr>
<tr>
<td>pH optimum</td>
<td>7-2</td>
<td>6-0</td>
<td>6-0</td>
<td>6-8</td>
<td>5-0-7-0</td>
</tr>
<tr>
<td>NaCl range (% w/v)</td>
<td>1-5-5-0</td>
<td>1-0-4-5</td>
<td>1-0-4-5</td>
<td>3-0-5-0</td>
<td>ND</td>
</tr>
<tr>
<td>NaCl optimum (% w/v)</td>
<td>2-5</td>
<td>2-5</td>
<td>2-5</td>
<td>3-0</td>
<td>ND</td>
</tr>
<tr>
<td>Electron donor</td>
<td>H₂</td>
<td>H₂, S₂O₃²⁻*, S⁶⁻</td>
<td>H₂, S₂O₃²⁻*, S⁶⁻</td>
<td>H₂, S₂O₃²⁻*, S⁶⁻</td>
<td>H₂</td>
</tr>
<tr>
<td>Electron acceptor</td>
<td>NO₃⁻, O₂</td>
<td>NO₃⁻, O₂, SO₄²⁻, acetate†</td>
<td>NO₃⁻, O₂</td>
<td>ND</td>
<td>1-0-2-0</td>
</tr>
<tr>
<td>O₂ tolerance (% w/v)</td>
<td><1-2</td>
<td><9-0</td>
<td><11-0</td>
<td><0-5-5</td>
<td><8-0</td>
</tr>
<tr>
<td>O₂ optimum (% w/v)</td>
<td>0-6-0-8</td>
<td>2-0-3-0</td>
<td>2-0-3-0</td>
<td>ND</td>
<td>1-0-2-0</td>
</tr>
<tr>
<td>G+C content (mol%)</td>
<td>37-3</td>
<td>38-5</td>
<td>37-4</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

*Only with O₂ as an electron acceptor.
†Inconsistent growth.
‡Adaptation up to 6 % was observed.
Persephonella hydrogeniphila sp. nov.

Fig. 2. Phylogenetic tree of representative members and environmental rDNA clones of thermophilic hydrogen-oxidizing bacteria, inferred from 16S rDNA sequences by the neighbour-joining method using 914 homologous sequence positions for each organism. The numbers are the bootstrap values for the branches (based on 1000 replicates). The bar indicates two substitutions per 100 nucleotides. The EMBL/GenBank/DDBJ database accession numbers are shown in parentheses.

genus *Persephonella* based on the evolutionary distance (97 %) of differentiation on the species level (Stackebrandt & Goebel, 1994).

DNA–DNA hybridization analysis was performed at 30 °C for 3 h and was measured fluorometrically using photo-biotin according to the method of Ezaki et al. (1989). *P. marina* EX-H1T (= DSM 14530T = OCM 794T), *P. guaymasensis* EX-H2T (= DSM 14351T = OCM 975T) and *Aquificales* strain CIR30126 (Van Dover et al., 2001) were used as reference strains. Although the phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new isolate was closely related to two known species of the genus *Persephonella*, the mean hybridization value for the isolate and *P. guaymasensis* EX-H2T was 5-4 %, the value for the new isolate and *P. marina* EX-H1T was 4-0 %, and the value for the isolate and *Aquificales* strain CIR30126 was 10-3 %. These results indicated that the new isolate could be genotypically differentiated from previously described species of the genus *Persephonella*.

Comparison with related species

Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain 29WT is closely related to the genus *Persephonella*. Cellular fatty acid composition analysis also supports the new isolate being a member of the genus. However, the isolate differs from previously described *Persephonella* species in many physiological properties (Table 1). The isolate is coccoid when grown under static culture conditions. This morphological feature is for the first time observed within the order *Aquificales*. The isolate grows significantly faster (40 min) than *P. marina* (5-02 h) and *P. guaymasensis* (7-8 h) when compared under their optimum growth conditions. The temperature range for growth of the new isolate is slightly lower than that of the two species of *Persephonella*. The new isolate is unable to utilize reduced sulfur compounds as energy sources (Table 1). In addition, DNA–DNA hybridization analysis clearly indicated that the new isolate could be genotypically differentiated from previously described species of the genus *Persephonella*. On the basis of these physiological and genetic properties, we propose a new species of the genus *Persephonella*, designated *Persephonella hydrogeniphila*; the type strain is strain 29WT (= JCM 11663T = DSM 15103T).

Recovery of *Persephonella hydrogeniphila* only from the surface zone of the chimney structure provides an important clue into delineating the ecological niche of the facultatively anaerobic hydrogen-oxidizing thermophiles. Nitrate is known to be unstable under high temperature and highly reducing environments such as deep-sea hydrothermal vents (Blochl et al., 1992; Völk et al., 1993). However, nitrate can be supplied from seawater with oxygen. Accordingly it might be possible that a population of facultatively anaerobic hydrogen-oxidizing thermophiles such as *P. hydrogeniphila* occurs in the surface area of the chimney, where nitrate and oxygen can be present and hydrogen is provided both from geochemical (gas propagation from the superheated vent fluids) and microbiological (indigenous microbial H₂ production by abundant fermentative thermophiles such as *Thermococcales* and *Thermotogales* members) processes. In fact, the predominant occurrence of the *Thermococcales* population is specifically observed in the surface layer of the same chimney structure as observed in a black smoker chimney from the Manus Basin (Takai et al., 2001; K. Takai and others, unpublished results). We also succeeded in isolating both the obligately aerobic thermophiles *Marinithermus hydrothermalis* and *Rhodothermus marinus* and the strictly
anaerobic nitrate- or sulfur-reducing thermophile Deferribacter sp. from the same subsample used in this study (Sako et al., 2003; Takai et al., 2003). The ecological potential of primary production by facultatively anaerobic, thermophilic chemolithoautotrophs in relatively low temperature and oxidative microhabitats in deep-sea hydrothermal vent environments is still unclear. This is a focus of our future investigations.

Description of Persephonella hydrogeniphila sp. nov.

Cells are motile cocci about 0·9–1·0 μm in diameter under static culture. Cells grown with agitation become straight rods 2·3–2·7 μm long and 0·4–0·5 μm wide. Gram-negative. Growth occurs at temperatures between 50 and 72·5 °C (optimum 70 °C), at pH 5·5–7·6 (optimum pH 7·2), and in the presence of 1·5–5·0 % NaCl (optimum 2·5 %). The optimum doubling time is about 40 min. The major cellular fatty acids are C20:1(40·8 %), C18:0 (24·7 %), C18:1 (23·8 %) and C16:0 (4·2 %). Obligately chemolithoautotrophic. Utilizes only H2 as electron donor and nitrate and O2 as electron acceptors. Growth is inhibited by O2 concentrations above 1·2 % (v/v). The G+C content is 37·3 mol% (HPLC). The DNA–DNA relatedness to *P. marina* EX-H1T and *P. guaymasensis* EX-H2T is low.

The type strain is 29WT (=JCM 11663T = DSM 15103T), which was isolated from a deep-sea hydrothermal vent chimney at Suiyo Seamount in the Izu-Bonin Arc, Japan (28°34′287″N, 140°38′366″E; depth 1385 m).

Acknowledgements

We would like to thank Dr A-L. Reysenbach (Department of Environmental Biology, Portland State University, USA) for kindly providing *P. marina* strain EX-H1T, *P. guaymasensis* strain EX-H2T, and *Aquificales* strain CIR30126. We also thank the captain and the crew of *Natsushima* – the mother ship of *Shinkai 2000*. We are grateful to Mr Takahiko Higasa, Graduate School of Agriculture, Kyoto University, Japan, for the electron micrographs. This work was partially supported by a Grant-in-Aid for Science Research (No. 12460093) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

