Nocardia cerradoensis sp. nov., a novel isolate from Cerrado soil in Brazil

Erika V. S. Albuquerque de Barros,1 Gilson P. Manfio,2† Valéria Ribiero Maitan,3 Luiz A. Mendes Bataus,3 Seung Bum Kim,4† Luis A. Maldonado4 and Michael Goodfellow4

Correspondence
Michael Goodfellow
m.goodfellow@ncl.ac.uk

1Departamento de Biologia Celular, Universidade de Brasilia, DF 70910900, Brazil
2Fundação Tropical de Pesquisas e Tecnologia, ‘Andre Tosello’, Rua Latino Coelho 1301, 13087-010, Campinas (SP), Brazil
3Departamento de Bioquímica e Biofísica, Universidade Federal de Goias, GO 74001970, Brazil
4Department of Agricultural and Environmental Science, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

An isolate from Cerrado soil, provisionally assigned to the genus Nocardia, was shown to have chemical and morphological properties typical of nocardiae. The strain formed a distinct monophyletic clade in the 16S rDNA tree together with Nocardia africana, Nocardia vaccinii and Nocardia veterana, and showed a unique combination of phenotypic properties that distinguished it from representatives of all recognized species of Nocardia. DNA–DNA relatedness studies indicated that the isolate belongs to a genomic species that is readily distinguished from its nearest neighbours, the type strains of N. africana and N. veterana. The organism is considered to merit species status, and it is proposed that it be designated Nocardia cerradoensis sp. nov., with strain Y9^T (≡CCT 5601^T =DSM 44546^T) as the type strain.

Complementary genotypic and phenotypic data have been used to clarify the systematics of the genus Nocardia (Goodfellow, 1998; Goodfellow et al., 1999). The genus currently accommodates 26 recognized species, which form a clade within the evolutionary radiation occupied by mycolic-acid-containing actinomycetes, that is, by actinomycetes that comprise the suborder Corynebacterineae Stackebrandt et al. 1997. The taxonomic status of most of the species is supported by a rich combination of molecular systematic and numerical phenetic data (Goodfellow et al., 1999; Hamid et al., 2001; Maldonado et al., 2001; Yassin et al., 2001a, b). The improved classification of the genus provides a framework for the recognition of additional nocardial species.

It seems likely that soil is the primary reservoir of nocardiae (Cross et al., 1976; Orchard et al., 1977), though members of the genus are better known as causal agents of actinomycete mycetoma and nocardioses (McNeil & Brown, 1994; Goodfellow, 1998; Hamid et al., 2001).

Little is known about the biology of nocardiae in natural habitats, though they have been considered to form part of the autochthonous soil microflora (Orchard, 1979, 1981). There is also evidence that nocardial species diversity in natural and artificial habitats is grossly underestimated (Orchard & Goodfellow, 1980; Wang et al., 1999; Maldonado et al., 2001). It is important to establish the species richness of nocardiae in natural ecosystems in order to determine the roles that specific nocardiae play in organic-matter turnover; representatives of such novel taxa also form high-quality biological material for exploitable biology (Bull et al., 2000).

The Brazilian Cerrado is an extensive species-rich ecosystem that contains commercially significant actinomycetes (Huddleston et al., 1997; Esposito et al., 1998). In a search for novel actinomycetes indigenous to this ecosystem, an unusual strain was isolated and provisionally assigned to the genus Nocardia by using morphological criteria. The aim of the present study was to determine the taxonomic status of this organism by using a polyphasic taxonomic approach.

Strain Y9^T was isolated on an R5 agar plate (Hopwood et al., 1985) that had been incubated for 4 days at 30 °C, following incubation with a soil sample collected from a Cerrado cultivated field of corn and Brachiaria grass; the sample had been kept for 5 months at 4 °C and treated with CaCO₃ prior
to the preparation of a dilution series. The isolate was maintained on modified Bennett’s agar (Jones, 1949) at room temperature and as suspensions of mycelial fragments in glycerol (20 %, v/v) at −80 °C. Biomass for chemotaxonomic studies was grown in shake flasks of modified Bennett’s broth for 5 days at 28 °C and harvested by centrifugation; the resultant pellets were washed twice with distilled water.

The colonial and micromorphological properties of the tested strain were observed using standard procedures following inoculation on modified Bennett’s agar plates for 14 days at 30 °C. The remaining phenotypic properties were scored following established procedures (Isik et al., 1999). The isomeric form of diaminopimelic acid (A2pm) of strain Y9T was determined by TLC of whole-organism hydrolysates (Staneck & Roberts, 1974). Standard procedures were also used for the extraction and analysis of mycolic acids (Minnikin et al., 1975), whole-organism sugars (Schaal, 1985) and isoprenoid quinones and polar lipids (Minnikin et al., 1984), using appropriate controls. The base composition of DNA of the strain was determined using the reverse-phase HPLC method described by Tamaoka (1994) and the HPLC conditions outlined by Gerke et al. (1984). DNA–DNA hybridizations were made, in duplicate, between Nocardia africana SD769T (=DSM 44491T) and Nocardia veterana N1071T (=DSM 44445T) and between Nocardia strain Y9T and the former two strains, under the auspices of the identification service at the Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany), as described by Kim et al. (1999). Genomic DNA was extracted and amplified from single colonies grown on modified Bennett’s agar using a procedure (Chun & Goodfellow, 1995) slightly modified from that of Pitcher et al. (1989). PCR amplification of the 16S rRNA gene was performed as described by Wang et al. (2001), and the resultant PCR product was purified by using the Wizard PCR purification system (Promega) according to the manufacturer’s instructions. The purified PCR products were sequenced using a Taq Dye Deoxy Terminator cycle sequencing kit (Applied Biosystems) and two universal primers, as described previously (Lu et al., 2001). Sequence gel electrophoresis was carried out and the nucleotide sequence obtained automatically by using an Applied Biosystems DNA sequencer (model 373A) and software provided by the manufacturer.

The 16S rRNA sequence of the test organism was aligned manually against nucleotide sequences of representative Nocardia strains retrieved from the Ribosomal Database Project (Maidak et al., 1997) and the GenBank database, using the PHYDIT program (J. Chun, unpublished data). Evolutionary trees were inferred using the least-squares (Fitch & Margoliash, 1967), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Kluge & Farris, 1969) methods. Numbers at nodes indicate percentages of bootstrap support based on a neighbour-joining analysis of 1000 resampled datasets; only values >55 % are shown. Bar, 0–1 substitutions per site.

The almost complete 16S rDNA sequence (1460 nt) obtained for strain Y9T was compared with those of related actinomycetes and found to contain all of the signature nucleotides expected for members of the suborder Corynebacterineae and the family Nocardiaceae (Stackebrandt et al., 1997). The high 16S rDNA sequence similarities found between the tested strain and representatives of the genus Nocardia (94–98.8 %) support its inclusion in this taxon. The 16S rDNA nucleotide sequence of strain Y9T also contains the signature nucleotides characteristic of members of the genus Nocardia (Chun & Goodfellow, 1995).

It is evident from the 16S rDNA sequence data that strain Y9T forms a distinct subclade in the nocardial tree together with N. africana, Nocardia vaccinii and N. veterana (Fig. 1). The taxonomic integrity of this subclade was supported by

Fig. 1. Neighbour-joining tree (Saitou & Nei, 1987) based on nearly complete 16S rDNA sequences (1377 nt) showing relationships between strain Y9T and representatives of the genus Nocardia. Asterisks indicate branches of the tree that were also found using the least-squares (Fitch & Margoliash, 1967), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Kluge & Farris, 1969) methods. F and P respectively indicate branches that were also recovered using the least-squares and maximum-parsimony methods. Numbers at nodes indicate percentages of bootstrap support based on a neighbour-joining analysis of 1000 resampled datasets; only values >55 % are shown. Bar, 0–1 substitutions per site.
all four treeing algorithms and by the 86 % bootstrap value obtained in the neighbour-joining analysis. Strain Y9\(^T\) shares 16S rDNA nucleotide similarity of 98-8 % with N. africana, 98-1 % with N. vaccinii and 99-0 % with N. veterana, values that respectively correspond to 17, 27 and 14 differences at 1420 nt sites. Higher 16S rDNA similarity values have been recorded between representatives of several validly described Nocardia species found to have DNA–DNA relatedness values well below the 70 % cut-off point recommended by Wayne et al. (1987) for the delineation of genomic species of bacteria. The type strains of Nocardia brevicatena and Nocardia paucivorans, for instance, were found to share 16S rDNA gene sequence similarity of 99-6 % and a DNA relatedness value of 61-9 % (Yassin et al., 2000a). Similarly, the type strains of Nocardia carnea and Nocardia flavorosea were shown to share a high 16S rDNA nucleotide similarity value (99-2 % or 12 nucleotide differences) and a mean DNA relatedness value of 5 % when the N. carnea strain was used as the probe (Chun et al., 1998). In the present study, Nocardia strain Y9\(^T\) showed a mean DNA–DNA relatedness value of 60-5 % with N. africana SD769\(^T\) and 58 % with N. veterana N1071\(^T\); the corresponding value between the N. africana and N. veterana strains was 47-8 %.

Strain Y9\(^T\) was found to have phenotypic properties typical of members of the genus Nocardia (Goodfellow, 1998; Goodfellow et al., 1999). The organism is an aerobic, Gram-positive, acid–alcohol-fast actinomycete that forms an extensive branched substrate mycelium that fragments into irregular, rod-shaped, non-motile elements and supports pinkish-white aerial hyphae on modified Bennett’s agar. The strain was also shown to produce whole-organism hydrolysates rich in meso-A\(_2\)-pm, arabinose and galactose (wall chemotype IV sensu Lechevalier & Lechevalier, 1970), to have major amounts of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides (phospholipid type II sensu Lechevalier et al., 1977), to have mycolic acids that co-migrated (R\(_f\) value of about 0-47) with those extracted from marker Nocardia strains and to have DNA with a G+C content of 68-8 mol%. The isolate also contained predominant amounts of hexahydrogenated menaquinones with eight isoprene units where the end two were cyclized; this menaquinone is

<table>
<thead>
<tr>
<th>Table 1. Phenotypic properties that distinguish strain Y9(^T) from the type strains of validly described Nocardia species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains are indicated as: 1, strain Y9(^T); 2, N. abscessus DSM 44432(^T); 3, N. africana DSM 44491(^T); 4, N. asteroides ATCC 19247(^T); 5, N. beijingensis IFO 16342(^T); 6, N. brasiliensis ATCC 19246(^T); 7, N. brevicatena DSM 43024(^T); 8, N. carnea DSM 43397(^T); 9, N. crassostreae ATCC 70418(^T); 10, N. cummidenlenes DSM 44490(^T); 11, N. corioretigera DSM 44484(^T); 12, N. farcinica ATCC 3318(^T); 13, N. flavorosea JCM 3332(^T); 14, N. flavica DSS 44488(^T); 15, N. ignorata DSM 44496(^T); 16, N. nova JCM 6044(^T); 17, N. otitidiscaviarium NCTC 1934(^T); 18, N. paucivorans DSM 44386(^T); 19, N. pseudobrasiliensis ATCC 51512(^T); 20, N. salmonicida JCM 4826(^T); 21, N. seriolae JCM 3360(^T); 22, N. soh DSS 44488(^T); 23, N. transvalensis DSS 43405(^T); 24, N. uniformis JCM 3324(^T); 25, N. vaccinii DSM 43285(^T); 26, N. veterana DSM 44445(^T); 27, N. vinacea JCM 10988(^T). ND, Not determined; d, doubtful. Data for reference strains were taken from Hamid et al. (2001), Kinoshita et al. (2001), Maldonado et al. (2001), Wang et al. (2001) and Yassin et al. (2000a, b) unless indicated otherwise.</td>
</tr>
<tr>
<td>Property</td>
</tr>
<tr>
<td>Biochemical tests:</td>
</tr>
<tr>
<td>Aesculin hydrolysis</td>
</tr>
<tr>
<td>Nitrate reduction</td>
</tr>
<tr>
<td>Urea hydrolysis</td>
</tr>
<tr>
<td>Decomposition of (%, w/v):</td>
</tr>
<tr>
<td>Adenine (0-4)</td>
</tr>
<tr>
<td>Cassein (1-0)</td>
</tr>
<tr>
<td>Exactin (0-3)</td>
</tr>
<tr>
<td>Hypoxamhine (0-4)</td>
</tr>
<tr>
<td>Tyrosine (0-5)</td>
</tr>
<tr>
<td>Uric acid (0-5)</td>
</tr>
<tr>
<td>Xanthine (0-4)</td>
</tr>
<tr>
<td>Growth on carbon sources (% of w/v):</td>
</tr>
<tr>
<td>d(+)-Mannitol (1-0)</td>
</tr>
<tr>
<td>z-L-Rhamnose (10-0)</td>
</tr>
<tr>
<td>d(+)-Sorbinol (10-0)</td>
</tr>
<tr>
<td>d(+)-Xyllose (1-0)</td>
</tr>
<tr>
<td>Sodium acetate (0-1)</td>
</tr>
<tr>
<td>Sodium citrate (0-1)</td>
</tr>
<tr>
<td>Growth at 45 °C</td>
</tr>
</tbody>
</table>

*Data from this study.
characteristic of representatives of the genera *Nocardiopsis* and *Skermania* (Chun et al., 1997; Goodfellow et al., 1999). The biochemical, degradative and growth profiles of strain Y9^T also serve to distinguish it from the type strains of the validly described species of *Nocardiopsis* (Table 1).

It is clear from the genotypic and phenotypic data that strain Y9^T merits recognition as a novel species of the genus *Nocardia*. It is therefore proposed that this organism be classified in the genus *Nocardia* as *Nocardia cerradoensis* sp. nov.

Description of *Nocardia cerradoensis* sp. nov.

Nocardia cerradoensis (cer.ra.do.en‘sis. N.L. fem. adj. cerradoensis pertaining to the Cerrado, soil of which was the source of the organism).

Aerobic, Gram-positive, catalase-positive, slightly acid–alcohol-fast, non-motile actinomycete that produces an orange substrate mycelium that fragments in situ into irregular rod-shaped elements. Pinkish-white aerial hyphae are formed. Orange to tan colonies are produced on modified Bennett’s agar. Colony elevation is convex to irregular, and colony margins are filamentous. Diffusible pigments are not produced. Aesculin and urea are hydrolysed and nitrate is reduced. Does not degrade adenine, casein, elastin, arabinose, dulcitol, D(-)-fructose, D(+)-glucose, glycerol, inulin, D(+)-maltose, D(+)-mannose, D(+)-melibiose, methyl α-D-glucoside, D(-)-ribose, salicin, D(+)-sucrose and D(+)-trehalose (all at 1%, w/v), acetate, benzoate, fumarate, m-hydroxybenzoic acid, D,L-malate, pyruvate and succinate (at 0.1%, w/v) are not. L-Glutamate, L-leucine, L-proline and L-valine are used as sole carbon sources for energy and growth, but acetamide, isoamyl alcohol, isobutanol (at 1%, w/v), benzoate, butyrate, gluconate and p-hydroxybenzoic acid (at 0.1%, w/v) are not. L-GLutamate, L-leucine, L-proline and L-valine are used as sole carbon and nitrogen sources, but acetamide, L-alanine, L-aspartic acid, gelatin, monoethanolamine, L-phenylalanine, uric acid and urea (all at 0.1%, w/v) are not. The G+C content of the DNA is 68.8 mol%. The organism was isolated from Cerrado soil in Brazil. The type strain is Y9^T (=CCT 5601^T =DSM 44546^T). The species description is based on a single strain and hence it serves as the type strain.

Acknowledgements

L. A. M. was supported by a studentship from the Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico.

References

Nocardia cerradoensis sp. nov.

