Runella zeae sp. nov., a novel Gram-negative bacterium from the stems of surface-sterilized Zea mays

Marisa K. Chelius, Jennifer A. Henn and Eric W. Triplett

A Gram-negative bacterium, designated NS12T, was previously isolated from duplicate treatments of surface-sterilized Zea mays stems. The plants were grown in synthetic soil under greenhouse conditions and watered with fertilizer containing no nitrogen. Strain NS12T was not isolated from plants watered with the standard level or 20\% (w/v) of the standard level of nitrogen.

Cells were bent rods that formed chains of irregular shapes in R2A broth. Unlike its closest described relative Runella slithyformis, strain NS12T fermented glucose and sucrose. The G+C content was 49 mol\%. Phylogenetic analysis of the 16S rRNA gene showed that the strain was a member of the domain Bacteria and is most closely related to R. slithyformis, a member of the Flexibacter group within the Cytophaga–Flexibacter–Bacteroides phylum.

Phenotypic and genotypic analyses indicated that strain NS12T could not be unequivocally distinguished based solely on fatty acid profile or 16S rDNA sequence similarity. R. slithyformis and NS12T had different responses to many phenotypic tests. For example, NS12T could utilize more carbon sources for growth, ferment glucose and sucrose, and would not grow at 4 °C. Cell morphology and arrangement were also quite different between the two strains. When grown on R2A broth, NS12T would produce long filaments with swollen ends that would fall out of solution, whereas R. slithyformis cells were circular with swollen ends that would not form filaments. In the present study, DNA–DNA hybridization analysis was performed to resolve the relationship between these two strains.

DNA–DNA hybridization of NS12T and R. slithyformis strain 4 (ATCC 29530) was carried out as described by De Ley et al. (1970) with the modification described by Huss et al. (1983) and Escara & Hutton (1980) using a Gilford System model 2600 spectrometer equipped with a Gilford model 2527-R programmer and plotter. Renaturation rates were

The new taxon Dyadobacter fermentans was isolated from maize (Zea mays) cultivated without nitrogen fertilizer in the greenhouse (Chelius & Triplett, 2000). Chelius & Triplett (2000) examined the species richness of bacteria inhabiting the stem tissue of maize grown under different nitrogen levels. D. fermentans and a related co-isolate, NS12T, resided in the same stem tissue of two plants receiving no nitrogen fertilizer. This unique strain (NS12T) has similarity to Runella slithyformis, a member of the Cytophaga–Flexibacter–Bacteroides group. Runella is a monospecific genus containing R. slithyformis, a taxon with an aquatic lifestyle (Larkin & Williams, 1978). Here, evidence is presented based on a polyphasic taxonomic study that NS12T is a distinct species for which the name Runella zeae sp. nov. is proposed.

Phenotypic and genotypic methods and results including nutritional and fatty acid analyses, antibiotic sensitivity, plant tests, DNA G+C content, PCR amplification and sequencing, and phylogenetic inference have been previously reported (Chelius & Triplett, 2000). Briefly, NS12T and R. slithyformis could not be unequivocally distinguished based solely on fatty acid profile or 16S rDNA sequence similarity. R. slithyformis and NS12T had different responses to many phenotypic tests. For example, NS12T could utilize more carbon sources for growth, ferment glucose and sucrose, and would not grow at 4 °C. Cell morphology and arrangement were also quite different between the two strains. When grown on R2A broth, NS12T would produce long filaments with swollen ends that would fall out of solution, whereas R. slithyformis cells were circular with swollen ends that would not form filaments. In the present study, DNA–DNA hybridization analysis was performed to resolve the relationship between these two strains.

DNA–DNA hybridization of NS12T and R. slithyformis strain 4 (ATCC 29530) was carried out as described by De Ley et al. (1970) with the modification described by Huss et al. (1983) and Escara & Hutton (1980) using a Gilford System model 2600 spectrometer equipped with a Gilford model 2527-R programmer and plotter. Renaturation rates were
computed with the TRANSFER.BAS program by Jahnke (1992). DNA was isolated by chromatography on hydroxyapatite by the procedure of Cashion et al. (1977). Experiments were performed at 66 °C in 2 × SSC. The level of DNA–DNA homology between NS12T and \textit{R. slithyformis} was 19%. Both strains are not related at the species level, when the threshold value of 70% for the definition of species according to the recommendation of the ad hoc committee is considered (Wayne et al., 1987).

NS12T co-exists with maize and cannot grow at a low temperature indicative of an aquatic lifestyle maintained by other members of related bacteria. The plant hypersensitivity response (HR) test was done to identify a potential antagonistic relationship between strain NS12T and \textit{Zea mays} (Chelius & Triplett, 2000). There was no detectable HR in tobacco. However, this does not confirm the nature of the relationship between NS12T and maize as a harmless one. To observe a potential growth response of maize to NS12T, a bacterial inoculum was applied to maize seeds. There was no difference in dry weights among uninoculated controls and plants inoculated with NS12T, over all three levels of N fertilizer tested. Thus NS12T appears to be neither beneficial nor pathogenic to maize since inoculated plants appeared healthy and the yield of above-ground plant biomass was unaffected.

Phenotypic and phylogenetic analyses provided ambiguous evidence that NS12T was a unique strain. Cluster analysis of fatty acid composition between \textit{R. slithyformis} and NS12T placed these within the same species and 16S rDNA sequence similarity between the two strains (94%) was too distant to determine the degree of relatedness (Chelius & Triplett, 2000). NS12T is phenotypically unique in that it: (i) has a cell morphology consisting of straight to slightly bent rods instead of a spiral-like form found with \textit{R. slithyformis} and some members of the \textit{Flexibacter} group; (ii) ferments glucose and sucrose; (iii) utilizes more carbon sources than \textit{R. slithyformis}; (iv) grows on peptone water; and (v) does not tolerate a growth temperature of 4 °C (Chelius & Triplett, 2000). This evidence taken collectively with results of DNA–DNA hybridization analysis confirms that NS12T represents a hitherto unknown \textit{Runella} species. Consistent with the phenotypic characteristics of the \textit{Runella} genus, NS12T is aerobic, chemo-organotrophic, does not hydrolyse gelatin, and forms pale-pink colonies.

Description of \textit{Runella zeae} sp. nov.

\textit{Runella zeae} (zeae, N.L. gen. n. Zeae of Zea, named because the organism was isolated from maize, \textit{Zea mays}).

Most of the phenotypic data presented below were first published in Chelius & Triplett (2000). Cells are Gram-negative, straight to slightly bent rods that form chains of irregular shapes. Colonies are round, smooth and salmon in colour when grown on R2A at 28 °C. This strain ferments, and produces acid from, glucose and sucrose. In contrast with \textit{Runella slithyformis}, no acid produced from ribose. Weakly catalase-positive and oxidase-positive. Temperature range for growth is 15–37 °C and highest NaCl concentration tolerated is less than 1.5%. This strain will grow on peptone water and weakly on Ayer’s agar. It will not grow on litmus milk. This strain will grow on the following sole sources of carbon: acetate, amidon, fumarate, D-lyxose, malate, malonate, succrose, tartrate, erythritol, D- and L-arabinose, \(\beta\)-methylxyloside, galactose, D-glucose, D-fructose, mannose, rhamnose, methyl \(\alpha\)-d-mannoside, methyl \(\alpha\)-D-glucoside, N-acetylglucosamine, amygdaline, arbutine, aesculin, salicin, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, inulin, melezitose, D-raffinose, xylitol, \(\beta\)-gentiobiase, D-turanose, D-tagatose and D- and L-fucose. This strain grew weakly on dulcitol, inositol, 5-ketogluconate, sorbitol and sorbose. This strain did not grow on D- and L-arabitol, glycerol, mannitol, methanol or formate. This strain cannot hydrolyse agar, cellulose or starch. In contrast to \textit{R. slithyformis}, this strain will not grow on \(\beta\)-arabitol, \(\alpha\)-arabitol, glycerol or mannitol. Unlike \textit{R. slithyformis}, this strain will grow on glycerone. Nitrate is not reduced to nitrite. This strain is resistant to ampicillin (25 \(\mu\)g ml\(^{-1}\)), kanamycin (50 \(\mu\)g ml\(^{-1}\)) and spectinomycin (10 \(\mu\)g ml\(^{-1}\)) but sensitive to rifampicin (25 \(\mu\)g ml\(^{-1}\)) and tetracycline (10 \(\mu\)g ml\(^{-1}\)) and trimethoprim (25 \(\mu\)g ml\(^{-1}\)). The level of DNA–DNA homology between NS12T and \textit{R. slithyformis} was 19%. The principal fatty acids are 36-9\% 15:0iso 2-OH, 16:10\% 16:1o7c, 17-8\% 16:1o5c and 16-1\% 15:0iso. The G+C content is 49 mol%.

This strain was isolated from surface-sterilized \textit{Zea mays} (cv. Mo17) stem and has been deposited in the American Type Culture Collection as ATCC BAA-293T and the BCCM/LMG Bacteria Collection as LMG 21438T.

Acknowledgements

The authors thank the College of Agricultural and Life Sciences of the University of Wisconsin-Madison and the Consortium for Plant Biotechnology Research for their support of this project. We also thank Victoria E. Pagan for assistance with bacterial nomenclature.

References

Runella zeae sp. nov.

