Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces

Demin Zhang,1,2 Huifang Yang,1 Zhiyong Huang,1 Wei Zhang1 and Shuang-Jiang Liu1

Author for correspondence: Shuang-Jiang Liu. Tel: +86 10 62527118. Fax: +86 10 62652317. e-mail: shuangjiang@hotmail.com

Five isolates of a previously undescribed species of purple non-sulfur phototrophic bacteria were characterized. They were Gram-negative, had mobile, budding vibrioid cells and contained lamellar intracytoplasmic membranes. Cultures produced red pigments in the light. Live cells of photosynthetic cultures exhibited absorption maxima at 382, 460–464, 494–496, 534–538, 596, 804–806 and 870–874 nm, indicating the presence of bacteriochlorophyll a and carotenoids belonging to the spirilloxanthin series in cells. The new isolates grew anaerobically or microaerobically in the light, but not aerobically in the dark. Optimal growth occurred at 35–40 °C and at pH 6.5–8.5. Various organic compounds were used as photosynthetic electron donors and carbon sources. Sulfate was used as sulfur source for growth. Ubiquinone 10 was synthesized as the major quinone. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain gcT, a representative of the new isolates, was closest to Rhodopseudomonas palustris, with a similarity of 97.5%. DNA–DNA hybridization further distinguished strain gcT from Rhodopseudomonas palustris at the species level. Therefore, the name Rhodopseudomonas faecalis sp. nov. was proposed for the new isolates. The type strain is gcT (fl AS1.2176T = JCM 11668T).

Keywords: purple non-sulfur phototroph, Rhodopseudomonas, 16S rRNA, taxonomy

INTRODUCTION

Purple non-sulfur phototrophs occur widely in environments. Most species of this bacterial group, like the species of the genus Rhodopseudomonas, are able to grow anaerobically in the light or aerobically in the dark with different carbon sources and electron donors. In Bergey’s Manual of Systematic Bacteriology, the genus Rhodopseudomonas included seven species: Rhodopseudomonas palustris, Rhodopseudomonas viridis, Rhodopseudomonas sulfoviridis, Rhodopseudomonas acidiphila, Rhodopseudomonas blastica, Rhodopseudomonas rutila and Rhodopseudomonas marina (Imhoff & Trüper, 1989). Since then, the taxonomy of Rhodopseudomonas has been subject to significant changes on the basis of increasing molecular and chemotaxonomic information. These changes include the rejection of Rhodopseudomonas rutila from this genus (Hiraishi et al., 1992), the reclassification of Rhodopseudomonas rosea and Rhodopseudomonas marina as Rhodopseudomonas rosea and Rhodopseudomonas marina (Hiraishi & Ueda, 1994; Hiraishi et al., 1995), and the transfer of Rhodopseudomonas blastica to the genus Rhodobacter (Kawasaki et al., 1993). Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis were transferred to a new genus, Blastochloris (Hiraishi, 1997). Most recently, Rhodopseudomonas acidiphila has been transferred to a newly established genus, Rhodoblastus (Imhoff, 2001).

In this paper, we describe the isolation, characterization and identification of a new phototrophic purple non-sulfur bacterium that was isolated from an anaerobic reactor digesting chicken faeces. Based on
the phenotypic characteristics and molecular studies on the isolates, we classified the bacterium as a new species of the genus *Rhodopseudomonas*, for which the name *Rhodopseudomonas faecalis* is proposed.

METHODS

Bacterial strains, media, and cultivation. Out of five isolates obtained from the effluent of an anaerobic digester treating chicken manure, strain gcT was studied and characterized in detail. *Rhodopseudomonas palustris* ATCC 17001T and ATCC 33872 were kindly provided by Professors J. F. Imhoff (Kiel, Germany) and T. Nakase (RIKEN, Japan), respectively.

ATM medium was modified from AT medium (Imhoff & Trüper, 1992) by addition of 0.1% sodium acetate and 0.1% sodium succinate, and by deletion of sodium bicarbonate. ATYP medium was created by addition of 0.05% yeast extract and 0.03% peptone to ATM medium. ATM was used for physiological and chemical tests, and ATYP medium was used for growth and maintenance of the strains. Agar plates were prepared by addition of 1.5% agar to the medium. Soft agar was made by reducing the amount of agar to 0.7%.

Routine cultivation was done anaerobically in screw-capped tubes or bottles filled with medium. Tubes or bottles were flushed with helium or nitrogen gas to remove oxygen. Incubation was conducted at 30–35°C under incandescent illumination of 1000–3000 lx.

Isolation. Samples were obtained from the effluent of an anaerobic digester treating chicken manure, located in the Northwest of China (Shan Xi province). The samples were diluted and inoculated into soft-agar tubes. The tubes were incubated anaerobically in the light. After 1 week cultivation, small red colonies appeared. Colonies were picked and streaked on agar plates. The plates were placed in anaerobic jars, which were filled with argon and incubated under illumination. This was repeated three to five times to ensure the purity of the culture.

Microscopy. Morphology and ultrastructure of cells grown under illumination were observed by optical microscopy (Olympus BH-2) and by scanning (S-570; Hitachi) and transmission (H-600; Hitachi) electron microscopy.

Absorption spectrum. The absorption spectrum of intact cells grown under illumination was measured with spectrophotometers HP1050 (Hewlett Packard) for 300–820 nm, and Hitachi (model Hitachi) for 800–1400 nm.

Physiological characterization. Tests for photoassimilation of organic substrates were performed in screw-capped tubes containing ATM medium as described in *Bergey's Manual* (Imhoff & Trüper, 1989).

DNA base composition and DNA-DNA hybridization. Genomic DNA was extracted and purified according to the method of Marmur (1961) except for the addition of protease K in the SDS-treating step. DNA base composition was determined by thermal denaturation (Marmur & Doty, 1962). DNA-DNA hybridization was carried out as described by Tindall et al. (1984) with a minor modification: DNA fragments were labelled with 32P according to the instructions provided with the nick translation kit (Boehringer Mannheim).

Phylogenetic analysis. A 16S rDNA fragment was amplified and sequenced by using the MicroSeq 16S rDNA Gene Kit (ABI Prism, 377 DNA Sequencer, Applied Biosystems). The 16S rRNA gene was amplified by using two primers: 27f (5'-GAG AGT TTG ATC CTG GCT CAG-3') and 1541r (5'-AAG GAG GTG ATC CAG CC-3'). Sequence alignment and analysis of the similarity of the 16S rRNA gene were performed with the CLUSTAL W program (Thompson et al., 1994), and the SEQBOOT, DNADIST, NEIGHBOR-JOIN and CONSENSE programs of the software package PHYLIP version 3.5c (Felsenstein, 1993).

Quinone determination. Quinones were determined following Collins (1985) and Wu et al. (1989). The collected bacteria pellet was lyophilized, and treated with chloroform and methanol (2:1, v/v). The quinones were separated on a 254 GF silica plate with n-hexane ethylether as the developing solvent. The number of isoprene units and the relative percentage of components of quinones were determined by HPLC (HP1074; Hewlett Packard) using the column Bondapak C18 (3.9×300 mm, Waters). *Rhodopseudomonas palustris* ATCC 17001T and quinone 10 (standard sample) were used as the control.

Nucleotide sequence accession numbers. The GenBank accession number for the 16S rRNA gene sequence of the test strain gcT is AF123085. The accession numbers of the reference strains are as follows: *Rhodopseudomonas palustris* ATCC 17001T, D25312; *Bradyrhizobium japonicum* USDA 110, Z35330; *Bradyrhizobium lupini*, X87273; *Nitrobacter hamburgiensis* X14$, L35502; *Nitrobacter winogradskyi* ATCC 25381$, L35506; *Afipia felix* ATCC 53690, M65248; *Rhodoblastus acidophilus* ATCC 25092, M34128; *Blastochloris viridis* ATCC 19567, D25314; *Blastochloris sulfoviridis* DSM 729, D86514; *Rhodoplanes roseus* DSM 5906$, D25313; *Rhodopseudomonas rhodobacensis*, AJ132402; *Rhodopseudomonas elegans* AS130, D25311; *Rhodobacter azotoformans* KA25, D70846; *Rhodobacter sphaeroides* ATCC 17023, X53855; *Rhodobacter capsulatus* ATCC 11166$, D16428; *Rhodobium orientis* ICMP 9337, D30792; *Rhodobium marinum* DSM 2698*T, D30790; *Rhodospirillum rubrum* ATCC 11170$, D30778; *Phaeospiillum fulvum* ATCC 15798, D14433; *Rubrivivax gelatinosus* ATCC 17011$, D16214.

RESULTS

Isolation

The effluent from an anaerobic reactor digesting chicken faeces became reddish after illumination in a storage tank. We judged that the colour change resulted from the growth of phototrophic purple bacteria. Indeed, five isolates were obtained by direct cultivation of diluted samples of effluent. One isolate, strain gcT, was studied further.

Morphology and ultrastructure

Strain gcT had Gram-negative vibrioid or peanut-shaped cells. The cells were 0.6–0.8 μm in width and 1.2–2.0 μm in length (Fig. 1). The cells multiplied by budding and formed rosette-like clusters in old cultures. They were mobile by means of a single polar flagellum (Fig. 2). Electronic microscopy revealed that...
Rhodopseudomonas faecalis sp. nov.

phototrophically grown cells formed intracytoplasmic membranes of the lamellar type (Fig. 3), typical of the genus *Rhodopseudomonas*.

Photopigments and quinones

Round or lens-shaped colonies were formed in agar cultures or reddish suspension produced in liquid cultures when grown anaerobically under illumination. The absorbance maxima of phototrophically grown cells were 382, 460, 494, 534, 596, 806 and 870 nm, indicating the presence of bacteriochlorophyll *a* and carotenoids of the normal spirilloxanthin series. Examination of lipid extracts of lyophilized cells revealed that the predominant ubiquinone was ubiquinone 10. No menaquinone was detected.

Growth and physiological and biochemical characteristics

The isolates were able to grow anaerobically in the light. They could not form colonies in darkness at full atmospheric oxygen tension, which is different from *Rhodopseudomonas palustris*. Strain gc*T* grew in the temperature range from 28 to 45 °C, with an optimum of 38 °C. When the five isolates were grown phototrophically in ATYP medium they exhibited a doubling time of 4–6 h. They could not grow under anaerobic conditions in the dark, even when nitrate or DMSO was added as terminal electron acceptor. The pH range for growth was 6.0–8.5, with an optimum of 7.0. No growth was found in the medium with 3% NaCl. Thiamin was required for growth, but it could be replaced by 0.01% yeast extract.

Strain gc*T* was different from other species of the genus *Rhodopseudomonas* in carbon source assimilation. It showed a strong tendency for photoorganotrophy with simple organic compounds as electron donors and carbon sources (Table 1). Acetate, pyruvate, lactate, malate, succinate and butyrate supported good growth. Fumarate and propionate supported moderate growth. No growth was found with benzoate, citrate, formate, gluconate, tartrate, rhamnose, sorbitol, ethanol, methanol, mannitol, aspartate or glutamate. Strain gc*T* grew photoautotrophically with hydrogen and sodium bicarbonate. Sulfide and thiosulfate were not utilized as the electron donor. Ammonium salts and glutamate were used as nitrogen sources. Sulfate was used as sulfur source for growth.

G+C mol % and DNA–DNA hybridization

The G+C content of the genomic DNA for strain gc*T* was 63.6 mol %. Strain gc*T* showed low levels of
Table 1. Differential characteristics of strain gcT, Rhodopseudomonas palustris and Rhodopseudomonas rhenobacensis

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Strain gcT</th>
<th>Rhodopseudomonas palustris ATCC 17001T</th>
<th>Rhodopseudomonas rhenobacensis AJ132402</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic growth in dark</td>
<td>--</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>7.0</td>
<td>6.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Cell diameter (µm)</td>
<td>0.5–0.8</td>
<td>0.6–0.9</td>
<td>0.4–0.7</td>
</tr>
<tr>
<td>Cell shape</td>
<td>Vibrioid or peanut shape</td>
<td>Rod</td>
<td>Rod</td>
</tr>
<tr>
<td>Growth factor</td>
<td>t</td>
<td>p-ABA, b (some)</td>
<td>p-ABA</td>
</tr>
<tr>
<td>Nitrate-reduction</td>
<td>--</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate</td>
<td>--</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Benzoate</td>
<td>--</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Ethanol</td>
<td>--</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Formate</td>
<td>--</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Fructose</td>
<td>±</td>
<td>±</td>
<td>--</td>
</tr>
<tr>
<td>Gluconate</td>
<td>--</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glucose</td>
<td>±</td>
<td>±</td>
<td>--</td>
</tr>
<tr>
<td>Glutamate</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Propionate</td>
<td>+</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Tartrate</td>
<td>--</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
</tbody>
</table>

* Data are modified according to our results.

DNA–DNA hybridization (17.7%) to *Rhodopseudomonas palustris* ATCC 17001T. The low level of genomic DNA relatedness supported the establishment of a new species of the genus *Rhodopseudomonas*.

Phylogenetic relationships

The 1444 bp representing more than 95% of the entire 16S rRNA gene were amplified from strain gcT and the
sequence was determined. It had four degenerate bases at positions 258, 268, 379 and 384 (corresponding to Escherichia coli 16S rRNA numbering). A similarity search was done in the Ribosomal Database Project (RDP) (Maidak et al., 2001). The results showed that the sequence of strain gcT was closest to Rhodopseudomonas palustris ATCC 17001T.

The 16S rDNA sequence of strain gcT was compared with a dataset consisting of 20 16S rRNA genes available from the RDP, including 15 of purple nonsulfur bacteria and 5 of closely related nonphototrophs of the β-subclass of the Proteobacteria. Strain gcT was closest to Rhodopseudomonas palustris (97.5%) and Rhodopseudomonas rhenobacensis (97%). It also showed high similarities to five chemotrophic bacteria species (> 97% similarity to Bradyrhizobium japonicum, ‘Bradyrhizobium lupini’, Nitrobacter hamburgensis, Nitrobacter winogradskyi and Afipia felis), as the other Rhodopseudomonas species did. A phylogenetic tree was constructed on the basis of evolutionarily corrected distances matrix (Fig. 4). Rubrivivax gelatinosus, which is in the β-subclass of the Proteobacteria, was used as outgroup. Strain gcT formed a close cluster with two species of Rhodopseudomonas (Rhodopseudomonas palustris and Rhodopseudomonas rhenobacensis) and five species of chemotrophic bacteria.

DISCUSSION

Strain gcT met the characteristic requirements of the genus Rhodopseudomonas: anaerobic photoheterotrophs, multiplying by budding, and forming the lamellar type of intracytoplasmic membrane. Cells contained bacteriochlorophyll a. Among the four species of Rhodopseudomonas, strain gcT most closely resembled Rhodopseudomonas palustris and Rhodopseudomonas rhenobacensis. However, substantial physiological differences existed between strain gcT and the above two species (Table 1). Strain gcT did not grow aerobically in dark, whereas both Rhodopseudomonas palustris and Rhodopseudomonas rhenobacensis did. Strain gcT required thiamin as a growth factor, whereas both Rhodopseudomonas palustris and Rhodopseudomonas rhenobacensis required aminobenzoic acid as a growth factor. Strain gcT did not utilize ethanol or gluconate as carbon sources whereas Rhodopseudomonas palustris and Rhodopseudomonas rhenobacensis did. More differences can be found in Table 1. Therefore, we classified strain gcT as a new species of the genus Rhodopseudomonas, and the name Rhodopseudomonas faecalis is proposed.

Phylogenetic analysis and DNA–DNA hybridization further supported strain gcT to be a new species of the genus Rhodopseudomonas. DNA–DNA hybridization results showed that strain gcT was clearly different from Rhodopseudomonas palustris at the species level (only 17.7%), supporting the phenotypic differences. Molecular phylogenetic analysis based on 16S rRNA gene sequences also indicated that strain gcT was different enough to be separated from other species of the genus Rhodopseudomonas (Fig. 4).

We propose a new name for strain gcT: Rhodopseudomonas faecalis.

Description of Rhodopseudomonas faecalis sp. nov.

Rhodopseudomonas faecalis (fae.ca’lis. L. adj. faecalis pertaining to faeces, as the organism was found in chicken faeces).

Cells are vibrioid or peanut-like, 0.6–0.8 µm wide and 1.0–2.0 µm long. Motile by means of polar flagella. Cells multiply by budding and asymmetric cell division. The daughter cell and mother cell resemble an ‘S’-form before separating from each other. Rosette-like clusters can be seen in old cultures. Gram-negative, α-proteobacterium. Phototrophically grown cells contain intracytoplasmic membranes of the lamellar type. The absorption maxima of living cells are 382, 460–464, 494–496, 534–538, 596, 804–806 and 870–874 nm. Thiamin is required as a growth factor and 0.05% yeast extract stimulates growth. Anaerobic phototroph. No growth under aerobic conditions. Ammonium salts are used as nitrogen sources. Sulfate is assimilated. Nitrate or DMSO cannot be used as a terminal electron acceptor. The G+C content of the DNA is 63.6 mol%. Isolated from chicken faeces. The type strain is strain gcT, which has been deposited in the Chinese Collection of Microorganisms, Beijing (AS1.2176T), and in the Japan Collection of Microorganisms, RIKEN, Wako (JCM 11668T).

ACKNOWLEDGEMENTS

This work was supported by grants from the Chinese Academy of Sciences (BRJH-2000). We thank Dr Yi Xu for suggestions on DNA–DNA hybridization and phylogenetic analysis. We also appreciate Dr Kequan Pei for his help in phylogenetic tree construction. Gifts of Rhodopseudomonas palustris ATCC 17001T and ATCC 33872 by Professors J. F. Imhoff (Kiel, Germany) and T. Nakase (RIKEN, Japan) are highly appreciated.

REFERENCES

