Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type

Silke Blümel,1 Hans-Jürgen Busse,2,3 Andreas Stolz1 and Peter Kämpfer4

Author for correspondence: Peter Kämpfer. Tel: +49 641 99 37352. Fax: +49 641 99 37359. e-mail: peter.kaempfer@agrar.uni-giessen.de

The taxonomy of strain KF46F T, which was isolated previously after an aerobic enrichment with the azo compound 1-(4'-carboxyphenylazo)-2-naphthol as the sole source of energy and carbon, was investigated by a polyphasic approach. The organism contained a quinone system with ubiquinone Q-8 and 2-hydroxyputrescine and putrescine as the major polyamines, suggesting that strain KF46F T belonged to the β-subclass of the Proteobacteria. The polar lipid profile consisted mainly of phosphatidylethanolamine and minor amounts of phosphatidyglycerol and diphosphatidyglycerol. Sequencing of the 16S rRNA gene supported its placement in the family Comamonadaceae, but the sequence similarities to the most closely related species of the genera Hydrogenophaga, Acidovorax, Comamonas and Xylophilus were only in the range 95-0 to 96-1%. Different methods for the construction of phylogenetic trees showed the separate position of strain KF46F T between the genera Hydrogenophaga, Variovorax, Comamonas and Xylophilus. Analysis of the fatty acids revealed an unusual profile, with the presence of 8:0 3-OH, 10:0 3-OH, 16:1 2-OH, 16:0 2-OH and 18:1 2-OH in addition to 17:0 cyclo, which is unique among the previously described genera of the family Comamonadaceae. Thus, a new taxon is proposed for strain KF46F T, with the name Xenophilus azovorans gen. nov., sp. nov.

Keywords: Xenophilus azovorans gen. nov., sp. nov., β-Proteobacteria, polyphasic taxonomy

Synthetic azo compounds are used in large quantities as dyes for textiles, paper, leather, cosmetics, food and various other materials. These xenobiotic compounds are generally not degraded in conventional aerobic wastewater-treatment systems and therefore are of significant concern as pollutants of the environment (Clarke & Anliker, 1980; Pagga & Brown, 1986). Over the last 10 years, some reports have been published that demonstrated the ability of certain bacteria to decolorize azo dyes under aerobic conditions (e.g. Banat et al., 1996; Blümel et al., 1998; Coughlin et al., 1999; Dykes et al., 1994; Heiss et al., 1992; Jiang & Bishop, 1994; Ogawa et al., 1986; Shaul et al., 1991). The adaptation of environmental bacteria to grow with simple carboxylated azo compounds has been studied in some detail. Overney (1979) isolated a Flavobacterium that was able to grow aerobically with the simple model compound 4,4'-dicarboxyazobenzene. Later, it was shown that a mixed bacterial culture that degraded 4,4'-dicarboxyazobenzene could be adapted to the degradation of more complex azo compounds such as 1-(4'-carboxyphenylazo)-4-naphthol (‘carboxy-Orange I’) or 1-(4'-carboxyphenylazo)-2-naphthol (‘carboxy-Orange II’). From these adaptation processes in continuous cultures, strain Pseudomonas K22 was obtained after cultivation with carboxy-Orange I and strain KF46F T from an enrichment with carboxy-Orange II (Kulla, 1981; Kulla et al., 1982, 1984). The aerobic azoreductases from both strains were purified, characterized and shown to differ significantly in their structure and substrate specificity (Zimmermann et al., 1982, 1984).

The EMBL accession number for the 16S rRNA gene sequence of strain KF46F T is AF285414.
In order to clarify the taxonomic position of bacterial strains with the ability to degrade azo compounds aerobically, we characterized strain KF46FT from the original enrichments performed by Kulla (1981) and Kulla et al. (1984).

Strain KF46 was isolated from a soil inoculum after a prolonged enrichment with carboxy-Orange II as the sole source of carbon and energy (Kulla et al., 1984). For the present study, strain KF46FT was used, which is a non-mucoid variant of strain KF46, a strain that has been preserved freeze-dried for the last 25 years (T. Leisinger, personal communication). The strain was kindly provided by T. Leisinger (ETH Zürich, Switzerland).

The Gram reaction was tested as described by Gerhardt et al. (1994). Cell morphology was observed under a light microscope (1000 x) with cells grown for 3 d at 30 °C on nutrient agar. On nutrient agar, strain KF46FT formed visible colonies (diameter of about 1 mm) within 3 d at 30 °C. No growth was observed within 14 d at 4, 37 or 42 °C. The colonies were yellowish and opaque. Often, colonies were not detectable as single entities because of the production of extracellular slimy substances. The strain was oxidase- and catalase-positive. Cells were motile, non-sporoforming rods (about 2 µm in length) and stained Gram-negative. The strain was able to grow on various nutrient-rich media, like Luria–Bertani or nutrient broth, at 30 °C, but lost the ability to degrade Orange II rapidly under these conditions.

Physiological characterization was done as described previously (Kämpfer et al., 1991). Strain KF46FT showed no (or very weak) production of acid from various sugars and related compounds, but d-fructose, d-mannitol and d-maltitol were utilized as sole sources of carbon. In addition, several organic acids, including amino acids, and some aromatic compounds were utilized (for details, see species description below). Most of the p-nitrophenyl derivatives tested were not hydrolysed, but hydrolysis of L-alanine p-nitroanilide and 2-deoxyxymethidimine 2'-p-nitrophenylphosphate were positive.

Fatty acid methyl esters were extracted and prepared by the standard protocol of the Microbial Identification System (MIDI; Microbial ID Inc.). Extracts were analysed by using a Hewlett Packard model HP6890A gas chromatograph equipped with a flame-ionization detector, an automatic sampler, an integrator and a computer, as described previously (Kämpfer & Kroppenstedt, 1996). Strain KF46FT contained the fatty acids 16:0 (35.1%), summed feature 4 (16:1o7c and iso 15:0 2-0H, 11.6%), summed feature 7 (18:1o7c, 18:1o9t and/or 18:1o12t, 20.5%) and 17:0 cyclo (14.2%) in major amounts. Furthermore, it was interesting that several hydroxylated fatty acids were produced (8:0 3-OH, 12.2%; 10:0 3-OH, 3.7%; 16:1 2-OH, 4.4%; 16:0 2-OH, 1.5%; 18:1 2-OH, 4.0%), some in significant amounts. The fatty acids 10:0 (2.8%) and 17:0 (1.2%) were also detected. A similar fatty acid profile has been described for the genera belonging to the family Comamonadaceae sensu Willems et al. (1991b). Willems et al. (1989) reported fatty acid profiles for the genera Hydrogenophaga, Acidovorax, Variovorax and Comamonas. For these genera, the major fatty acids were 16:1o7c, 18:1o7c, 18:1o9t and/or 18:1o12t, and 16:0. The presence of 8:0 3-OH and 10:0 3-OH was detected in almost all species of these genera, but 16:0 2-OH was detected only in some species of Comamonas and Hydrogenophaga (Willems et al., 1989). The fatty acid 16:1 2-OH, which was found to constitute 4.4% of the total fatty acids of strain KF46FT, has been found only in representatives of the genus Comamonas (Stead, 1992) and 18:1 2-OH, which also constitutes 4% in KF46FT, has not previously been detected in representatives of the family Comamonadaceae.

Analysis of the respiratory quinone of KF46FT by HPLC (Tindall, 1990) gave only one characteristic peak, which corresponded to ubiquinone Q-8. Analysis of the polyamines (Busse & Auling, 1988; Busse et al., 1997) revealed a pattern for strain KF46FT that is characteristic for taxa of the β-Proteobacteria (Busse & Auling, 1988). Strain KF46FT displayed the major compounds 2-hydroxyputrescine (13.54 µmol g-1 dry weight) and putrescine (11.71 µmol g-1 dry weight) and moderate amounts of spermidine (3.24 µmol g-1 dry weight), whereas 1,3-diaminopropane, cadaverine, homospermidine and spermine were detected only in minor amounts (0.04, 0.03, 0.03 and 0.30 µmol g-1 dry weight, respectively).

Polar lipids were determined by two-dimensional TLC, as described previously (Ventosa et al., 1993). The polar lipid profile of strain KF46FT consisted of four compounds. Phosphatidylethanolamine was detected as the major lipid and phosphatidylglycerol and diphosphatidylglycerol were detected as minor spots after two-dimensional TLC. In addition, an unknown polar lipid (ninhydrin-negative, molybdenum blue-positive and alpha-naphthol-negative staining) was detected.

Isolation of genomic DNA was performed as described by Ausubel et al. (1996) and the determination of the G+C content was carried out by HPLC according to Mesbah & Whitman (1989). Genomic DNA of Hydrogenophaga palleronii DSM 63T (G+C content 67.5 mol %; Aragno & Schlegel, 1992) and Bacillus subtilis DSM 618 (G+C content 43 mol %; Slepecky & Hemphill, 1992) were used as standards. The G+C content of the genomic DNA of strain KF46FT was determined to be 70.4 ±0.3 mol % (mean of four measurements).

The gene for the 16S rRNA was amplified by PCR using different universal primers (Gerhardt et al., 1994) and sequenced. Phylogenetic analysis was performed using the ARB software package (Ludwig & Strunk, 1997). Distance-matrix, maximum-parsimony and maximum-likelihood methods were applied for tree
Xenophilus azovorans gen. nov., sp. nov.

Fig. 1. Phylogenetic tree showing the relationship between *Xenophilus azovorans* strain KF46F^T (=NCIMB 13707^T) and selected strains from other bacterial taxa. The tree was constructed using the maximum-parsimony method. GenBank accession numbers are given in parentheses.

Construction as implemented in the ARB software package.

The 16S rRNA sequence of strain KF46F^T, containing a continuous stretch of 1484 bp (approximately positions 28–1521 according to the *Escherichia coli* numbering), was used to search the GenBank and Ribosomal Database Project libraries. Sequence searches showed that strain KF46F^T was phylogenetically most closely related to the β-subclass of the Proteobacteria. The results of sequence similarity calculations indicated that the nearest relatives of strain KF46F^T are *Xylophilus ampelinus* (96–1% sequence similarity), *Aquaspirillum metamorphum* (96-0%) and *Hydrogenophaga palleronii* (95-4%). Only slightly lower sequence similarities (92–95% sequence identity) were found to different species from the genera *Variovorax*, *Comamonas*, *Brachymonas*, *Delftia* and *Acidovorax*. From these results, it was evident that strain KF46F^T belonged to the family *Comamonadaceae*. Dendrograms were generated by using the maximum-parsimony, maximum-likelihood and neighbour-joining methods from the ARB program package. The results of all these trees (Fig. 1) show the maximum-parsimony analysis showed a separate and almost equidistant position of strain KF46F^T between the genera mentioned above.

Extrachromosomal DNA was detected by a modification of the method of Barton *et al.* (1995). Pulsed-field gel electrophoresis demonstrated that strain KF46F^T harbours two large plasmids, of about 100 and 350 kb.

The detection of ubiquinone Q-8 as the single quinone, the presence of hydroxyputrescine and putrescine, the large amounts of 16:0 and 17:0 cyclo fatty acids and the absence of 16:0 3-OH, as well as the G+C content of the DNA and the sequence of the 16S rRNA, clearly placed strain KF46F^T in the family *Comamonadaceae*. This family consisted originally of the genera *Comamonas*, *Acidovorax*, *Variovorax*, *Hydrogenophaga* and *Xylophilus* and some misclassified *Aquaspirillum* species (Willems *et al.*, 1991b). In later studies, further species belonging to the genus *Acidovorax* were detected (Willems *et al.*, 1992; Schulze *et al.*, 1999) and also further genera were described (Hiraishi, 1994; Hiraishi *et al.*, 1995; Irgens *et al.*, 1996; Wen *et al.*, 1999). The phylogeny of the family was investigated in more detail by Wen *et al.* (1999) and, on the basis of this study, the family comprises the 10 genera included in Table 1. Strain KF46F^T is clearly different from all other previously described genera belonging to the family *Comamonadaceae*.

The main reason for creating a new genus for strain KF46F^T was the rather large degrees of sequence divergence of the 16S rRNA gene from the corresponding sequences of different genera of the family *Comamonadaceae*. Furthermore, strain KF46F^T can be clearly separated from the most closely related genera, *Hydrogenophaga*, *Comamonas* and *Xylophilus*,
Table 1. Differential characteristics of the genus *Xenophilus* and other genera in the family *Comamonadaceae*

<table>
<thead>
<tr>
<th>Character</th>
<th>Xenophilus</th>
<th>Delftia</th>
<th>Comamonas</th>
<th>Acidovorax</th>
<th>Hydrogenophaga</th>
<th>Variovorax</th>
<th>Xylophilus</th>
<th>Rhodoferax</th>
<th>Brachymonas</th>
<th>Polaromonas</th>
<th>Aquaspirillum metastrophum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell morphology</td>
<td>Rods</td>
<td>Rods</td>
<td>Rods or spirilla</td>
<td>Rods</td>
<td>Rods</td>
<td>Rods</td>
<td>Rods</td>
<td>Curved rods</td>
<td>Cocobacilli or short rods</td>
<td>Rods</td>
<td>Rods or spirilla or curved rods</td>
</tr>
<tr>
<td>Flagella</td>
<td>NA</td>
<td>Polar or bipolar tufts</td>
<td>Polar or bipolar tufts</td>
<td>One polar</td>
<td>One polar</td>
<td>Peritrichous</td>
<td>One polar</td>
<td>One polar</td>
<td>One polar</td>
<td>One polar</td>
<td>Bipolar tufts or 1–2 flagella at only one pole</td>
</tr>
<tr>
<td>Pigments</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Phototrophy</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Chemolithotrophic growth with H₂</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>+</td>
<td>d</td>
<td>NA</td>
<td>NA</td>
<td>−</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Psychrophilic growth</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Growth factors</td>
<td>−</td>
</tr>
<tr>
<td>Denitrification</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Carbon source used for growth:</td>
<td>Acetamide</td>
<td>NA</td>
<td>d</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>β-Alanine</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>2-Aminobutyrate</td>
<td>NA</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>d</td>
<td>NA</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>3-Aminobutyrate</td>
<td>NA</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>NA</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Fructose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Glycerol</td>
<td>(−)</td>
<td>d</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Maleate</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>d</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Mannitol</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>d</td>
<td>d</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Malonate</td>
<td>NA</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Phenylacetate</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>l-(−)-Tartarate</td>
<td>NA</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>l-Tryptothen</td>
<td>NA</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>t-Tryptothen</td>
<td>(−)</td>
<td>d</td>
<td>−</td>
<td>d</td>
<td>d</td>
<td>NA</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Major quinone system</td>
<td>Q-8</td>
<td>Q-8</td>
<td>Q-8</td>
<td>Q-8</td>
<td>Q-8</td>
<td>Q-8</td>
<td>Q-8</td>
<td>Q-8 + RQ-8</td>
<td>Q-8</td>
<td>Q-8</td>
<td>−</td>
</tr>
<tr>
<td>Major cellular fatty acids(s)</td>
<td>16:0, 16:1, 18:1</td>
<td>−</td>
</tr>
<tr>
<td>Major 3-OH acids</td>
<td>10:0, 8:0</td>
<td>10:0, 8:0</td>
<td>10:0</td>
<td>8:0</td>
<td>8:0</td>
<td>(10:0)</td>
<td>10:0</td>
<td>10:0</td>
<td>8:0</td>
<td>10:0</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>2-OH acids detected</td>
<td>16:0, 16:1, 18:1</td>
<td>16:0, 16:1, 18:1</td>
<td>Traces of 16:0</td>
<td>14:0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>70.4 (HPLC)</td>
<td>67.69</td>
<td>63.66</td>
<td>67.70</td>
<td>65.69</td>
<td>66.68</td>
<td>68.69</td>
<td>59.61 (HPLC)</td>
<td>63.65 (HPLC)</td>
<td>52.57</td>
<td>56.62</td>
</tr>
</tbody>
</table>
by its unique fatty acid pattern and several physiological features. On the basis of these observations, we propose strain KF46F^T as representative of a new species of a new genus, *Xenophilus azovorans* gen. nov., sp. nov.

Description of Xenophilus gen. nov.

Xenophilus (xe.no’phi.lus. Gr. adj. xenos foreign; Gr. masc. n. philos friend; N.L. masc. n. Xenophilus friend of foreign compounds, referring to the isolation of the type species by enrichment on azo dyes).

Cells are straight to slightly curved rods, 0.5–1 μm by 1–3 μm. Cells occur singly or in pairs and are motile. Gram-negative, oxidase-positive and possesses an oxidative metabolism. The G+C content of DNA is 70.4 mol% (HPLC method). *Xenophilus* belongs to the family *Comamonadaceae* and, on the basis of 16S rRNA sequences, is equidistantly related to representatives of the genera *Xylephilus* and *Hydrogenophaga*. Ubiquinone Q-8 is the only quinone type; 2-hydroxyputrescine and putrescine are the major polyamines. The polar lipid profile is characterized by the presence of phosphatidylyethanolamine (major lipid) and phosphatidylglycerol and diphosphatidylglycerol in addition to an unknown polar lipid (minor lipids). The type species is *Xenophilus azovorans*.

Description of Xenophilus azovorans sp. nov.

Xenophilus azovorans (a.zo.vo’rans. N.L. neut. azo from azo compounds; L. v. vorare to devour; N.L. part. adj. azovorans azo-devouring).

The description is the same as that given above for the genus. On nutrient agar, colonies are circular, opaque, slightly raised and pale-yellowish with entire margins. Colonies are often not detectable as single entities because of the production of extracellular slimy substances. The type strain grows at 30 °C; no growth is found at 4, 37 or 42 °C. L-Alanine p-nitroanilide and 2-deoxythymidine 2’-p-nitrophenylphosphate are hydrolysed. The following compounds are not hydrolysed: p-nitrophenyl β-D-galactopyranoside, p-nitrophenyl β-D-glucuronide, p-nitrophenyl α-D-glucopyranoside, p-nitrophenyl β-D-glucopyranoside, p-nitrophenyl β-D-xylopyranoside, bis-p-nitrophenyl phosphosphate, bis-p-nitrophenyl phenylphosphonate, bis-p-nitrophenyl phosphorylcholine, L-α-amino p-nitroanilide, ω-1- glutamate p-nitroanilide and L-proline p-nitroanilide. No acid production can be detected from the following sugars: glucose, lactose, sucrose, D-mannitol, dulcitol, salicin, adonitol, inositol, sorbitol, L-arabinose, raffinose, L-rhamnose, maltose, D-xylene, trehalose, cellobiose, methyl D-glucoside, erythritol, melibiose, D-arabitol and D-mannose. The following compounds are utilized as sole sources of carbon: glycerol, D-fructose, D-mannitol, maltitol, acetate, propionate, adipate, azelate, fumarate, glutarate, DL-3-hydroxybutyrate, itaconate, DL-lactate, 2-oxoglutarate, pyruvate, suberate, L-aspartate, L-histidine, L-leucine, L-proline, L-tryptophan, 3-hydroxybenzoate and 4-hydroxybenzoate. The following compounds are not utilized as sole sources of carbon: N-acetylglactosamine, N-acetylgulcosamine, L-arabinose, L-arginine, D-cellobiose, D-galactose, gluconate, D-glucose, D-maltose, D-mannose, α-D-melibiose, L-rhamnose, D-ribose, D-sucrose, salicin, D-trehalose, D-xyllose, adonitol, L-isoisinot, L-sorbitol, putrescine, cis-aconitate, trans-aconitate, 4-aminoobutyrate, citrate, mesaconate, L-alanine, β-alanine, L-ornithine, L-phenylalanine, L-serine and phenylacetate. The major non-polar fatty acids are 16:0, summed feature 4 (16:1ω7c and iso 15:0 2-OH) and summed feature 7 (18:1ω9t, 18:1ω9t and/or 18:1ω12t). In addition, 8:0 3-OH, 10:0 3-OH, 16:0 2-OH, 16:1 2-OH, 18:1 2-OH and 17:0 cyclo are detected in significant amounts.

The type strain is strain KF46F^T (= DSM 13620^T = NCIMB 13707^T). Strain KF46F^T was isolated from soil after continuous enrichment with 1-(4-carboxyphenylazo)-2-naphthol. The 16S rDNA gene sequence has been deposited in the EMBL database under the accession number AF285414.

References

De Vos, P., Kersters, K., Falsen, E., Pot, B., Gillis, M., Segers, P. &...
Spirillum degradation of the azo dyes Orange I and Orange II.

Arch Comamonas terrigena nom. rev. emend., and Curr determined by automated 16S rDNA sequencing.

Microbiol Lett 78, 221–226.

Phylogenic affiliations of Rhodoferax fermentans and related species of phototrophic bacteria as determined by automated 16S rDNA sequencing.

Rhodoferax fermentans gen. nov., sp. nov., a phototropic purple nonsulfur bacterium previously referred to as the ‘Rhodococcus gelatinous-like’ group.

J Chromatogr 479, 297–306.

Chemosphere 15, 479–491.

Syst Appl Microbiol 17, 128–134.

Syst Appl Microbiol 22, 205–214.

Chemosphere 22, 107–119.

Ventosa, A., Marquez, M. C., Kocur, M. & Tindall, B. J. (1993). Comparative study of ‘Micrococcus sp.’ strains CCM 168 and...
Xenophilus azovorans gen. nov., sp. nov.

