NOTE

Mycoplasma alligatoris sp. nov., from American alligators

D. R. Brown,1 J. M. Farley,1† L. A. Zacher,1 J. M.-R. Carlton,1‡ T. L. Clippinger,2§ J. G. Tully,2¶ and M. B. Brown1

Author for correspondence: D. R. Brown. Tel: +1 352 392 4700 ext. 3975. Fax: +1 352 392 9704. e-mail: brownd@mail.vetmed.ufl.edu

Mycoplasmas were isolated from multiple tissues of diseased American alligators (*Alligatormississippiensis*). This paper presents biochemical, serological and molecular genetic characterizations of a lethal pathogen of alligators for which the name *Mycoplasma alligatoris* sp. nov. is proposed. The type strain is A21JP2T (ATCC 700619T).

Keywords: mycoplasma, alligator, crocodilian, reptile

An epizootic of pneumonia with polyserositis and multifocal arthritis emerged in captive alligators in Florida, USA, in 1995 (Brown et al., 1996). Mycoplasmas were cultured from multiple organs, peripheral blood, synovial fluid and cerebrospinal fluid of affected alligators. Nine isolates cloned from single colonies obtained from different tissues of six animals appeared to be identical as determined by growth characteristics and biochemical tests. In this paper strain A21JP2T is fully characterized and compared with previously described mollicutes.

Cultivation of mycoplasmas

The mycoplasmas characterized in this paper were isolated from tracheal swabs, minced lung, limb joint synovial fluid or cerebrospinal fluid of alligators that died during the 1995 epizootic. Primary isolates were cultured at 30°C in an atmosphere containing 5% CO2 on ATCC medium 988 (Tully, 1995) agar with 105 U penicillin G l−1, 104 U polymyxin B l−1, 65 mg cefoperazone l−1 and 20% (v/v) fetal bovine serum, or in ambient air in ATCC medium 988 broth with those supplements. Nine isolates (A21CSFP3, A21JP2T, A21JP3, A22JP2–1A, N95–701LPA2N, N95–713LP3, N95–713TP3, N95–714LPA1N and N95–740LP1) cloned from single colonies obtained from different tissues of six animals were characterized. To determine the temperature range for growth and reproduction, the isolates were incubated in 10-fold serial dilutions of broth at 4, 22, 25, 30, 34, 37 and 42°C. Anaerobic growth on agar at 30 and 37°C was assessed by using the GasPak system (Becton Dickinson). Primary isolates grew extremely rapidly for mycoplasmas, reaching mid-exponential growth phase as indicated by acidification of the medium within 8 h at 30°C. Optimum growth occurred at temperatures of 30 and 34°C. The organisms grew slowly at 22 and 25°C, and did not grow at 4, 37 or 42°C. The organisms grew well under anaerobic conditions at 30°C but did not grow anaerobically at 37°C.

Colonies of the organisms on agar were examined at up to ×100 magnification by using a compound microscope. The cellular morphology of the organisms was assessed by Gram stain (Barile, 1983b) at ×1000 magnification and by transmission electron microscopy of tissues from infected alligators. Colonies were easily visible on agar under a dissecting microscope within 24 h of incubation at 30°C and had a typical fried-egg appearance at ×20 magnification (Fig. 1). Gram staining showed faintly stained minute pleomorphic bodies. Ultrathin sections of infected alligator tissues showed that the mycoplasmas lacked a cell wall and were non-helical (Fig. 2).

Filtration studies

Cultures were diluted 1:10 in broth medium and then passed sequentially through membrane filters (Gelman) with pore diameters of 800, 450 and 200 nm.
The number of colonies of the unfiltered cultures and the filtrates was determined by inoculating 10-fold serial dilutions onto agar and counting the colonies. Filtration reduced the number of colonies of a representative culture from 1.2×10^{11} c.f.u. ml$^{-1}$ in the unfiltered culture to 2.2×10^{10} c.f.u. ml$^{-1}$ in the 800 nm filtrate, 1.0×10^9 c.f.u. ml$^{-1}$ in the 450 nm filtrate and 2.1×10^8 c.f.u. ml$^{-1}$ in the 200 nm filtrate. The filtration characteristics were similar for all nine isolates.

Reversion experiments

Each isolate was diluted 1:10 in broth medium without antibiotics and incubated at 30 and 37°C. When growth was detected by acidification of the medium, each isolate was passaged again to fresh broth without antibiotics for a total of 10 passages. Each passage was subcultured on agar without antibiotics. Cultures were examined for differences in colony morphology and broth turbidity. No reversion was observed.

Sterol requirement

A requirement for sterol was established by using two different methods: by testing susceptibility of the isolates to digitonin and by attempted cultivation of the isolates in ATCC medium 988 lacking serum or any other cholesterol supplements (Tully, 1983). Cultures were serially diluted 10-fold in broth medium without serum and incubated at 30 and 37°C. All isolates were sensitive to digitonin with zones of growth inhibition between 6 and 9 mm wide. All isolates grew in broth containing 20 and 2% fetal bovine serum, but none grew in broth containing only 0.2% serum.

Biochemical tests

The mycoplasma isolates were examined for metabolism of glucose, mannose, lactose and sucrose (Razin & Cirillo, 1983); for hydrolysis of arginine, aesculin and urea (Barile, 1983a; Razin, 1983); for phosphatase activity (Bradbury, 1983); and for production of film and spots (Freundt, 1983) by using standard methods. Appropriate control cultures of *Acholeplasma axanthum*, *Mycoplasma alkalescens*, *Mycoplasma bovis*, *Mycoplasma pulmonis* and *Ureaplasma urealyticum* were obtained from ATCC. All alligator isolates fermented glucose, mannose, lactose and sucrose. They did not hydrolyse arginine, aesculin or urea. All isolates possessed phosphatase activity. They did not produce film and spots.

SDS-PAGE and Western immunoblotting

Whole-cell lysates (Horowitz & Cassell, 1978) of A21JP2T and six other isolates were separated on denaturing 10% polyacrylamide gels and stained with Coomassie blue or electroblotted onto nitrocellulose membranes by using standard methods. Rabbit polyclonal antiserum, made against A21JP2T whole-cell lysate by using standard methods of immunization

Fig. 1. Typical colony morphology of A21JP2T after 48 h growth on ATCC medium 988 at 30°C in an atmosphere containing 5% CO₂. Typical colony diameter, 200–300 µm.

Fig. 2. Transmission electron micrograph of alligator synovium infected with *Mycoplasma alligatoris*, showing absence of a cell wall and non-helical cell morphology of the mycoplasmas. Bar, 500 nm.
Mycoplasma alligatoris sp. nov.

![Fig. 3. Coomassie stain of whole-cell lysates of seven isolates of Mycoplasma alligatoris separated by SDS-PAGE. Lanes: 1, molecular mass markers; 2, N95–713TP3; 3, A21JP2; 4, N95–714LPA1N; 5, N95–713LP3; 6, N95–701LPA2N; 7, A21JP3; 8, N95–740LP1.](image)

![Fig. 4. Western blot of whole-cell lysates of seven isolates of Mycoplasma alligatoris probed with polyclonal antiserum against A21JP2. Lanes: 1, molecular mass markers; 2, N95–713TP3; 3, A21JP2; 4, N95–714LPA1N; 5, N95–713LP3; 6, N95–701LPA2N; 7, A21JP3; 8, N95–740LP1.](image)

Minor variation among the isolates in the patterns of the predominant antigens recognized by rabbit polyclonal antiserum against A21JP2T is shown in Fig. 4.

Determination and analysis of partial 16S rRNA gene sequence

The 16S rRNA gene of A21JP2T was amplified by using PCR with primers complementary to terminal sequences conserved among mollicutes (van Kuppeveld et al., 1992; Kirchhoff et al., 1997). The nucleotide sequence of both strands was determined by automated dyeoxy DNA sequencing methods without molecular cloning. The 16S rRNA gene nucleotide sequence of A21JP2T was released to GenBank with accession number U56733 under the provisional name ‘Mycoplasma lacerti’ sp. nov. The sequence obtained was compared to all sequences held at GenBank by using BLAST (Bilofsky & Burks, 1988; Altschul et al., 1997). Pairwise nucleotide sequence similarity scores were computed with default gap and gap length weights. A score of 0 indicated that two sequences had only random sequence similarity and a score of 1 indicated that sequences were identical (Brown et al., 1995).

The partial 16S rRNA gene nucleotide sequence of A21JP2T (1161 contiguous bp including all variable regions, approximately 77% of the gene) did not completely match any other sequence in GenBank. However, the sequence diverged from the 16S rRNA gene nucleotide sequence of Mycoplasma crocodyli (U63137) by only 2%. Pairwise nucleotide sequence comparisons with the 16S rRNA genes of other mycoplasmas indicated that A21JP2T was a member of the Mycoplasma fermentans phylogenetic clade (Maniloff, 1992), the next closest relative being the avian mycoplasma Mycoplasma sturni (91% sequence similarity; U22013). For perspective, the sequence similarity was 87% to Mycoplasma fermentans (M24289) and 72% to Lactobacillus casei (M58815).

Genome size determination and restriction endonuclease analysis

The genome size of A21JP2T was estimated by using PFGE analysis after cleavage with restriction endonucleases BssHII and SmaI (Neimark & Carle, 1995). Size standards used were cleaved Saccharomyces cerevisiae chromosomes (Bio-Rad) and concatenated ladders of bacteriophage λ DNA (New England Biolabs). Genome fragments were separated on 0.8% Chromosomal Grade Agarose gels (Sigma) by using a clamped homogeneous electrical field (CHEF) PFGE system (Bio-Rad). Electrophoresis conditions were 40 s pulse time at 200 V for 24 h with 0.5 × TBE buffer cooled to 14°C. The gels were stained with ethidium bromide and visualized by photography under shortwave UV illumination. The genome cleavage patterns of restriction endonucleases ApaI, BamHI, KpnI, SacII, SalI and XhoI were similarly analysed.
The results of CHEF PFGE of A21JP2T cells after lysis and restriction endonuclease digestion are shown in Fig. 5. Restriction endonucleases BssHII and Smal yielded fragment patterns reliable for genome size estimations of 1060 and 1040 kb, respectively, which were in the middle of the range of chromosome sizes of Mycoplasma species. No recognition sequences for Apal or BamHI were detected in the chromosome, while KpnI, SacII, SalI and XhoI produced many small fragments.

Serological studies

Rabbit polyclonal antisera against A21JP2T and against the mollicutes listed in Table 1 were used to perform conventional growth inhibition tests of A21JP2T (Clyde, 1983). In addition, reciprocal metabolism inhibition tests were performed with Mycoplasma crocodyli MP145T (Taylor-Robinson, 1983). The growth inhibition tests revealed that A21JP2T was serologically unique. No growth inhibition was observed. In particular, A21JP2T was serologically distinct from Mycoplasma crocodyli, which was in agreement with the finding of Kirchhoff et al. (1997). That finding was confirmed by results of reciprocal metabolism inhibition tests, which yielded titres of 1: < 16 for heterologous antisera and 1: > 4096 for homologous antisera for the two species.

Pathogenicity

The nine isolates described were obtained from alligators that died during an epizootic characterized by pneumonia with fibrinous polyserositis and multifocal arthritis. Thirty-three 200–300 kg adult male alligators died and 13 moribund alligators were euthanized within 1 month of the index case. No mycoplasma could be isolated from unaffected healthy alligators. In a preliminary experimental inoculation study, healthy seronegative (titres 1: < 10) 1 m long alligators were inoculated with A21JP2T. Alligators received 10⁶ c.f.u. in a 1 ml volume by intracoelomic injection (n = 2) or by instillation through the glottis (n = 2). A control alligator received sterile broth. Three of four inoculated alligators died between 1 and 3 weeks post-inoculation with systemic mycoplasmosis. Regardless of inoculation route, the mycoplasmas were re-isolated post-mortem by culture from multiple organs, blood, synovial fluid and cerebrospinal fluid. The identity of the re-isolated mycoplasmas was confirmed by restriction endonuclease analysis of the amplified 16S rRNA gene. The 6 week post-inoculation titre of the surviving alligator rose to 1:640 and remained constant for the following 8 weeks. Mycoplasmas were not recovered from any site of the surviving alligator at necropsy after 14 weeks. The control remained seronegative and free of mycoplasmas at necropsy. The Henle–Koch–Evans postulates were therefore fulfilled for A21JP2T as the aetiology of fatal mycoplasmosis of alligators (Evans, 1976).

Taxonomic assignment

The properties of strain A21JP2T described in this paper fulfil revised criteria for new species descriptions in the class Mollicutes (International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mollicutes, 1995). Properties mandating assignment to this class include absence of a cell wall, filterability and penicillin resistance. The non-helical
morbidity of strain A21JP2\T, optimum growth temperature of 30–34°C and inability to hydrolyse urea place the organism within the order Mycoplasmatales, family Mycoplasmataceae. A sterol requirement and the conserved nucleotide sequences of the 16S rRNA gene indicate the organism belongs in the genus Mycoplasma. Finally, the lack of a serologic relationship of strain A21JP2\T with the type strains of previously established Mycoplasma species, in particular Mycoplasma crocodyli, demonstrates its stature as a distinct species. Accordingly, we propose the designation of Mycoplasma alligatoris for this organism, in consideration of the initial isolation from an alligator. The English word alligator is from the Spanish el lagarto (Latin ille Lacertu the lizard). However, the specific epithet lacerti, originally proposed for this taxon (Brown et al., 1996, 1997), was ultimately rejected because of the modern phylogenetic distinction between lizards (Lacertilia) and crocodilians (Crocodylia). The taxonomic description below summarizes the properties of the organism.

Description of Mycoplasma alligatoris sp. nov.

Mycoplasma alligatoris (all.ig.a.tor’is. L. gen. n. alligatoris from an alligator).

Cells lack a true cell wall and are surrounded only by cytoplasmic membrane. Non-helical and non-motile. Cells filterable through 200 nm membranes. Colonies on solid medium with 0-8% agar exhibit typical fried-egg morphology at low magnification. Chemo-organotroph. Acid produced from glucose. Does not hydrolyse arginine nor urea. Serum or sterol required for sustained growth. Temperature range 22–34°C, with optimum at 30–34°C. Serologically distinct from all other established *Mycoplasma* species. Genome size 1040–1060 kb. Isolated from multiple organs, blood, synovial fluid and cerebrospinal fluid of diseased American alligators (*Alligator mississippiensis*) in par-}

Table 1 Mycoplasma species tested by growth inhibition for cross-reactivity with *Mycoplasma alligatoris* A21JP2\T

<table>
<thead>
<tr>
<th>Mycoplasma species tested</th>
<th>Mycoplasma species tested</th>
<th>Mycoplasma species tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma agalactiae PG2\T</td>
<td>Mycoplasma crocodyli MP145\T</td>
<td>Mycoplasma lipofaciens R171\T</td>
</tr>
<tr>
<td>Mycoplasma agassizii PS6\T</td>
<td>Mycoplasma cynos H831\T</td>
<td>Mycoplasma mobitus MK405\T</td>
</tr>
<tr>
<td>Mycoplasma agassizii Utah C</td>
<td>Mycoplasma dispers 462/2\T</td>
<td>Mycoplasma mobile 163K\T</td>
</tr>
<tr>
<td>Mycoplasma aliis Islley\T</td>
<td>Mycoplasma edwardii PG24\T</td>
<td>Mycoplasma molare H542\T</td>
</tr>
<tr>
<td>Mycoplasma anatis 1340\T</td>
<td>Mycoplasma elephants E42\T</td>
<td>Mycoplasma mustelae MX9\T</td>
</tr>
<tr>
<td>Mycoplasma bovigenitalium PG11\T</td>
<td>Mycoplasma equigenitalium T37\T</td>
<td>Mycoplasma mycoides subsp. mycoides PG1\T</td>
</tr>
<tr>
<td>Mycoplasma bovirhinis PG43\T</td>
<td>Mycoplasma fastidiosum 4822\T</td>
<td>Mycoplasma mycoides subsp. mycoides U30847</td>
</tr>
<tr>
<td>Mycoplasma borus Donetta\T</td>
<td>Mycoplasma felinum PG18\T</td>
<td>Mycoplasma neurolyticum Type A\T</td>
</tr>
<tr>
<td>Mycoplasma borovaci M165/69\T</td>
<td>Mycoplasma felix CO\T</td>
<td>Mycoplasma ovipneumoniae Y98\T</td>
</tr>
<tr>
<td>Mycoplasma buteonis Bb/T2g\T</td>
<td>Mycoplasma fermentans PG18\T</td>
<td>Mycoplasma oxoniensis 128\T</td>
</tr>
<tr>
<td>Mycoplasma californiaicum ST-6\T</td>
<td>Mycoplasma flocculare Ms42\T</td>
<td>Mycoplasma penetrans GTU54\T</td>
</tr>
<tr>
<td>Mycoplasma canis PG14\T</td>
<td>Mycoplasma gallinarum DD\T</td>
<td>Mycoplasma pirum 70–159\T</td>
</tr>
<tr>
<td>Mycoplasma capricolum subsp. capricolum Calif.kid\T</td>
<td>Mycoplasma gallisepticum PG31\T</td>
<td>Mycoplasma pneumoniae FH\T</td>
</tr>
<tr>
<td>Mycoplasma capricolum subsp. capripneumoniae F38\T</td>
<td>Mycoplasma gallopavonis WR1\T</td>
<td>Mycoplasma pullorum CKK\T</td>
</tr>
<tr>
<td>Mycoplasma caviae G122\T</td>
<td>Mycoplasma genitalium G37\T</td>
<td>Mycoplasma pulmonary PG34\T</td>
</tr>
<tr>
<td>Mycoplasma catharyngis 117C\T</td>
<td>Mycoplasma glycophilum 486\T</td>
<td>Mycoplasma putrefaciens KS-1\T</td>
</tr>
<tr>
<td>Mycoplasma citelli RG-2\T</td>
<td>Mycoplasma hypneumoniae J\T</td>
<td>Mycoplasma staurmi UCMFT\T</td>
</tr>
<tr>
<td>Mycoplasma collis 58B\T</td>
<td>Mycoplasma hyorhinis BST7\T</td>
<td>Mycoplasma sualvi Mayfield B\T</td>
</tr>
<tr>
<td>Mycoplasma cumboradale MMP-4\T</td>
<td>Mycoplasma imitans 4229\T</td>
<td>Mycoplasma suavovia WVU 1853\T</td>
</tr>
<tr>
<td>Mycoplasma conjunctivae HRC581\T</td>
<td>Mycoplasma iowae 695\T</td>
<td>Mycoplasma testudinis 01008\T</td>
</tr>
<tr>
<td>Mycoplasma corogypi BV1\T</td>
<td>Mycoplasma iowae PPAY</td>
<td>Mycoplasma verekundum 107\T</td>
</tr>
<tr>
<td>Mycoplasma cottewii VIS\T</td>
<td>Mycoplasma leonicaptivi 3L2\T</td>
<td>Mycoplasma yeatsii GIH\T</td>
</tr>
<tr>
<td>Mycoplasma cricetuli CH\T</td>
<td>Mycoplasma leopharyngis LL2\T</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

This work was supported by US Department of Agriculture NRICGP grant 9802614, Morris Animal Foundation grant 98ZO-44 and contributions from the St Augustine Alligator Farm and Zoological Park. Nucleotide sequence determination and electron microscopy were performed by the Interdisciplinary Center for Biotechnology Research at the University of Florida. We thank Jean P. Euzéby, Ecole Nationale Veterinaire, Toulouse, France, for advice on nomenclature. Researchers interested in access to the reference collection of antisera used in this study, which originated at the US National Institute of Allergy and Infectious Diseases Laboratory, should contact Dr Maureen Davidson and Dr Jerry Davis, curators of the Mollicutes Culture Collection at the University of Florida. *Mycoplasma alligatoris* A21JP2\T has also been deposited into that collection.
References

