Characterization of *Vibrio viscosus* and *Vibrio wodanis* isolated at different geographical locations: a proposal for reclassification of *Vibrio viscosus* as *Moritella viscosa* comb. nov.

Eva Benediktsdóttir,1 Linda Verdonck,2 Cathrin Spröer,3 Sigurður Helgason4 and Jean Swings2

1 Institute of Biology, Microbiology Laboratory, University of Iceland, Ármúli 1A, IS-108 Reykjavík, Iceland
2 Laboratory of Microbiology, University of Ghent, Ledeganckstraat 35, B-9000 Ghent, Belgium
3 Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Germany
4 Institute for Experimental Pathology, Fish Disease Laboratory, Keldur, University of Iceland, IS-112 Reykjavík, Iceland

Vibrio viscosus and *Vibrio wodanis* are recently described species of psychrotropic bacteria that have been found associated with a disease called ‘winter ulcer’, affecting salmonid fish reared in saline water in Norway, Iceland and recently in Scotland. *V. viscosus* and *V. wodanis* strains initially isolated from fish in Iceland and Norway were subjected to characterization using biochemical tests, SDS-PAGE of whole-cell proteins and a novel DNA fingerprinting method, amplified fragment length polymorphism (AFLP). The *V. viscosus* strains isolated from diseased fish grouped into homogeneous subgroups according to geographical origin and challenge experiments revealed that representatives of these groups are virulent. The results revealed that the *V. wodanis* strains are heterogeneous genotypically and phenotypically. Sequencing of almost complete 16S rRNA genes of *V. viscosus* and *V. wodanis* revealed that *V. viscosus* showed a 99·1% sequence similarity to *Moritella marina* and *V. wodanis* showed a 98·8% sequence similarity to *Vibrio logei* CIP 103204. A reclassification of *Vibrio viscosus* as *Moritella viscosa* comb. nov. is proposed.

Keywords: *Moritella*, *Vibrio*, psychrophiles, fish pathogens

INTRODUCTION

Skin ulceration is one of the most frequently recorded disease conditions in farmed fish and can be produced by microbiological as well as mechanical means. A disease called ‘winter ulcer’, which affects salmonid fish reared at cold temperatures, is characterized by shallow skin lesions and often by diffuse or petechial haemorrhaging in internal organs. Winter ulcer has been observed for many years in Norway (Lunder, 1992; Lunder et al., 1995) and Iceland (Benediktsdóttir et al., 1991, 1998) and recently in Scotland (Bruno et al., 1995; Benediktsdóttir et al., 1998). Two groups of psychrotrophic vibrio bacteria are most often isolated from the lesions or the internal organs, either one of them or a mixed culture of both species. The two groups have recently been described as two new species, *Vibrio viscosus* and *Vibrio wodanis* (Lunder et al., 2000). Two strains of *V. viscosus* have been tested for pathogenicity in Norway and Iceland, respectively, and both were shown to be pathogenic for Atlantic salmon parr, but strains of *V. wodanis* that have been tested for pathogenicity have not been shown to be virulent to Atlantic salmon (Lunder et al., 1995; Benediktsdóttir et al., 1998).

The present work is based on a strain collection isolated mostly from fish suffering from winter ulcer in Iceland and Norway. Two fingerprinting techniques were used to compare strains of *V. viscosus* and *V. wodanis* isolates from different geographical locations: SDS-PAGE of whole-cell soluble proteins and amplified fragment length polymorphism (AFLP) (Vos et al., 1995; Janssen et al., 1996), in addition to biochemical and physiological tests. For characterization and epidemiological purposes, the AFLP technique has been used to differentiate strains of bacteria, including *Aeromonas* (Huys et al., 1996), *Vibrio vul-

The EMBL accession numbers for the 16S rDNA sequences of *Moritella viscosa* and *Vibrio wodanis* are Y17574 and Y17575, respectively.
nificus (Arias et al., 1997) and Bacillus (Keim et al., 1997). The AFLP technique depends on the selective amplification of restriction fragments of whole chromosomal DNA and discriminates between bacterial strains below the species level. SDS-PAGE depends on the products of the whole chromosome and groups strains to species and sometimes subspecies levels. Both methods have been proposed to provide a reliable way to measure genomic relatedness that would be comparable to DNA–DNA hybridization (Kersters, 1985; Huys et al., 1996).

DNA hybridization has shown that the closest known relatives to V. viscosus and V. wodanis are Vibrio marinus and Vibrio logei, respectively (Lunder et al., 2000). Sequencing of the 16S rRNA of V. marinus (Kita-Tsukamoto et al., 1993; Gauthier et al., 1995) has confirmed earlier studies based on 5S rRNA (Kita-Tsukamoto et al., 1993; Gauthier et al., 1995). DNA–DNA hybridization (Kersters, 1988) has comparable to DNA–DNA hybridization (Kersters, 1988). Accordingly, a new genus, Moritella, has been proposed to accommodate this species (Urakawa et al., 1998). Hereafter this species will be referred to as Moritella marina.

In this study, genotypic and phenotypic variability of strains of V. viscosus and V. wodanis isolated at different geographic locations were investigated and the sequences of almost complete 16S rRNA genes of V. viscosus and V. wodanis were determined.

METHODS

Bacterial strains. A total of 68 fish strains and 3 reference strains were included in the study. Of the fish strains, 37 were isolated in Iceland and 29 in Norway, mostly from diseased Atlantic salmon. The reference strains M. marina NCIMB 11447 (ATCC 15381T), V. logei NCIMB 1143 (ATCC 15382) and V. logei NCIMB 22525 (ATCC 29985T) were obtained from the National Collections of Industrial and Marine Bacteria, Aberdeen, UK. Strains 95/373-2988, 95/373-2989, 95/378, 95/403, 95/449, 95/453, 95/371, 95/461 and 95/880 were kindly supplied by S. Høie and strains NVI 88/478 and NVI 88/441 by E. Myhr, both at the National Veterinary Institute in Oslo, Norway. Strains 94/1793-1, 94/1793-2, 95/240, 95/313, 95/325 and 95/326, which originally came from the National Veterinary Institute in Oslo, were kindly given by K. Pedersen, Royal Veterinary and Agricultural University, Copenhagen, Denmark. Strains 138/94, 153/94, 157/94, 270/95, 271/95, 287/95, 288/95, 289/95, 290/95, 291/95, 292/95 and 293/95 were kindly supplied by E. Greger, ALPharma, Bellevue, WA, USA. Strains labelled K were isolated at the Fish Disease Laboratory, Keldur, Reykjavik, Iceland; strains labelled F were isolated at the Biology Institute, Reykjavik, Iceland. A list of strains included in this study and their origin is presented in Table 1.

The strains were maintained on Marine agar 2216 (Difco) at 4°C and reinoculated every 1 or 2 months. Long-term storage was at —80°C in Marine broth 2216 supplemented with 10% glycerol.

16S rDNA sequencing. Two strains were used, V. viscosus 88/478T and V. wodanis 88/441T. Extraction of genomic DNA and amplification of the 16S rDNA was carried out as described by Rainey et al. (1992). PCR products were purified using the Prep-A-Gene kit and sequenced directly using the Taq DyeDeoxy Terminator Cycle Sequencing Kit (Applied Biosystems). Purified sequence reactions were electrophoresed on a 6%(w/w) polyacrylamide gel for 12 h using an Applied Biosystems model 373A Automated DNA Sequencer.

Sequences were manually aligned with published sequences of the ɣ-proteobacteria included in the Ribosomal Database Project (Maidak et al., 1997). Pairwise evolutionary distances were computed using the correction of Jukes & Cantor (1969). Phylogenetic analyses were carried out as described by DeSoete (1983). Bootstrap values, based on the analyses of 1000 trees of 796 polymorphic sites, were calculated using the programs PHYLIP and NJBOOT.

AFLP

Extraction of genomic DNA. Cells were harvested from Marine agar and washed in 500 µl RS buffer (150 mM NaCl, 10 mM EDTA, pH 8.0). After centrifugation the cells were resuspended in 100 µl TE buffer (10 mM Tris/HCl, 1 mM EDTA, pH 7.6) and 15 µl RNase (10 mg ml−1) was added to the suspensions. Lysis of the cells using Sarkosyl/guanidium thiocyanate (Sigma) and further extraction of genomic DNA was as described by Pitcher et al. (1989). The DNA was finally dissolved in 100 µl TE buffer (10 mM Tris/HCl, 0.1 mM EDTA, pH 8.0). The DNA concentration was determined by measuring A260 on a spectrophotometer (1 OD260 unit = 50 µg DNA ml−1). The integrity of the DNA was checked by electrophoresis in a submerged horizontal agarose gel (0.8–1.0%, w/v) using an electrophoresis buffer (40 mM Tris/acetate, 1 mM EDTA, pH 8.0) containing 0.5 µg ethidium bromide ml−1. DNA preparations were stored at —20°C.

Oligonucleotide adaptors and primers. The sequences of the HindIII and TaqI adaptors and primers used in this study are given in detail by Janssen et al. (1996).

Template preparation. Template preparation was as described by Vos et al. (1995) and Janssen et al. (1996). Thus, in this study, 1 µg DNA was digested with 10 units each of HindIII and TaqI in a final volume of 30 µl. Adaptors were added to a final concentration of 0.04 and 0.4 µM for HindIII and TaqI adapters, respectively, and ligated to the restriction fragments using T4 ligase. The DNA was subsequently precipitated with 1.25 M ammonium acetate and 50% (v/v) 2-propanol. Template DNAs were stored at —20°C.

AFLP reactions. AFLP reactions employed two oligonucleotide primers: H01, corresponding to the HindIII and TaqI ends, and T01, corresponding to the TaqI ends. The HindIII primer was radioactively end-labelled using [γ-32P] ATP and T4 polynucleotide kinase (Vos et al., 1995). Selective amplification and PCR reactions were performed on a PE 9600 thermocycler (Perkin Elmer) as described by Janssen et al. (1996).

Gel analysis. Prior to gel loading and electrophoresis, mixtures were heated for 3 min at 95°C and then rapidly cooled on ice to prevent nucleic acids from renaturing. Each sample (1–2 µl) was loaded on a 5% denaturing sequencing polyacrylamide gel (obtained as premixed SequaGel solutions from National Diagnostics). To 100 ml casting solution, 0.8 µl 10% ammonium persulfate and 40 µl TEMED were added and gels were cast using a SequiGen 38 × 50 cm gel apparatus (Bio-Rad). TBE (100 mM Tris/
Table 1. Bacterial strains used in the study and their origin

<table>
<thead>
<tr>
<th>Species</th>
<th>Designation</th>
<th>Origin</th>
<th>Place of isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. viscosus (M. viscosa)</td>
<td>K6 (= 137/89-2); K7 (= 311/89-1); K9 (= 427/89-1); K2 (= 80/90-4); K3 (= 79/90-3); K23 (= 407/90); K30 (= 78/90); K34 (= 14/90); K38 (= 21/90); K27 (= 73/91); K58 (= 147/92-1); F70; K49 (= 11/94-2); K54 (= 65/94-4)</td>
<td>Atlantic salmon</td>
<td>South-west Iceland, 64° N</td>
</tr>
<tr>
<td>K35 (= 32/90); K37 (= 79/89-6)</td>
<td></td>
<td>Rainbow trout</td>
<td>South-west Iceland, 64° N</td>
</tr>
<tr>
<td>K11 (= 451/89-1); K25 (= 537/90-2); K47 (= 136/93-1); K56 (= 195/94-1)</td>
<td>Atlantic salmon</td>
<td>North Iceland, 66° N</td>
<td></td>
</tr>
<tr>
<td>F57 95/449 (= 3039) 138/94; 288/95 (= AL 266); 289/95 (= AL 262); 290/95 (= AL 265); 292/95 (= AL 267); 293/95; 88/478°; 94/1793-2; 95/371 (2987); 95/373 (2988); 95/378 (2991); 95/403 (3041); 95/453 (3040); 95/461 (3049); 95/880 (3135)</td>
<td>Lumpsucker</td>
<td>South-west Iceland, 64° N</td>
<td></td>
</tr>
<tr>
<td>153/94; 270/95; 271/95</td>
<td>Atlantic salmon</td>
<td>Norway, 67–68° N</td>
<td></td>
</tr>
<tr>
<td>V. wodanis</td>
<td>K8 (= 419/89-4); K16 (= 396/90-3); K26 (= 42/91); K29 (= 78/90); K32 (= 80/90-1); K48 (= 11/94-1); K59 (= 147/92-2)</td>
<td>Atlantic salmon</td>
<td>South-west Iceland, 64° N</td>
</tr>
<tr>
<td>K16 (= 396/90-3) K4 (= 312/90); K12 (= 451/89-2); K13 (= 525/89-3); K14 (= 525/89-4); K24 (= 537/90-1); K28 (= 77/90); K31 (= 114/90-1); K57 (= 195/94-2)</td>
<td>Rainbow trout</td>
<td>South-west Iceland, 64° N</td>
<td></td>
</tr>
<tr>
<td>F31 95/240 88/441° 157-94; 287/95 (= AL 263); 291/95 (= AL 264); 94/1793-1; 95/313; 95/325; 95/326</td>
<td>Haddock</td>
<td>South-west Iceland, 64° N</td>
<td></td>
</tr>
<tr>
<td>89-2); K7 (= 419/89-4); K16 (= 396/90-3); K26 (= 42/91); K29 (= 78/90); K32 (= 80/90-1); K48 (= 11/94-1); K59 (= 147/92-2)</td>
<td>Atlantic salmon</td>
<td>Norway, 59–60° N</td>
<td></td>
</tr>
<tr>
<td>K16 (= 396/90-3) K4 (= 312/90); K12 (= 451/89-2); K13 (= 525/89-3); K14 (= 525/89-4); K24 (= 537/90-1); K28 (= 77/90); K31 (= 114/90-1); K57 (= 195/94-2)</td>
<td>Atlantic salmon</td>
<td>Norway, 61–62° N</td>
<td></td>
</tr>
<tr>
<td>F31 95/240 88/441° 157-94; 287/95 (= AL 263); 291/95 (= AL 264); 94/1793-1; 95/313; 95/325; 95/326</td>
<td>Atlantic salmon</td>
<td>Norway, 62–64° N</td>
<td></td>
</tr>
</tbody>
</table>

HCl, 100 mM boric acid, 2 mM EDTA, pH 8.3) was used as the electrophoresis buffer. Gels were run at a constant power of 110 W for approximately 150 min. After electrophoresis, gels were transferred to 33% Whatman chromatography paper and vacuum dried on a gel dryer (model 583; Bio-Rad) for 50 min at 80 °C. A sheet of Hyperfilm-MP (Amersham) was exposed to the dried gel. Exposure times varied between 19 and 24 h, depending on the measured radioactivity of the gel. Films were developed using a Fuji RGII X-ray Film Processor. Autoradiograms were scanned by a RayVen RSU1 densitocaner (X-Ray Scanner Corporation). Digitized optical densities were saved as TIFF files and further processed using GelCompar 3.1 software (Applied Maths). Digital images were normalized and combined according to the methods described by Vauterin & Vauterin (1992). A similarity matrix was created using the Dice similarity coefficient, Sd (Sneth & Sokal, 1973). For band comparison, a band position tolerance value of 0.8% was allowed to compensate for misalignment of homologous bands due to technical imperfections. The unweighted pair methods using average linkages (UPGMA) was used to cluster the patterns (Vauterin & Vauterin, 1992).

SDS-PAGE. Bacterial growth was harvested from one or two Marine agar plates and washed three times in 1 ml phosphate buffer with 2% NaCl, pH 7.3, while keeping all material on ice. The pellet was resuspended in 69 ml STB buffer consisting of 0.75% (w/v) Tris/HCl, 5% (v/v) mercaptoethanol and 5% (w/v) glycerol to an OD595 of 0.8–1.1 and mixed before adding 100 μl 20% SDS. The sample was heated at 95 °C for 10 min, cooled and centrifuged at 10000 r.p.m. for 5 min. The supernatant was kept frozen until used. The samples were run overnight in a 1.5 mm 5% (w/v) acrylamide stacking gel, pH 6.8, and a 12% acrylamide separating gel, pH 8.8, at 6 mA per gel using Hoefer SE600 electrophoresis equipment. After fixation in 3% (w/v) TCA, gels were stained with Coomassie blue, destained and dried. For correction of gel to gel variation, four samples of Psychrobacter immobilis LMG 1125 were run on each gel. The gels were scanned, normalization was performed and clustering of the strains was made by using the UPGMA method with GelCompar software (Vauterin & Vauterin, 1992).

Biochemical, physiological and serological tests. The ability to utilize four different sugars as sole organic source of carbon with and without 2 mg Casamino acids per 100 ml was tested in a basal medium according to Lee et al. (1981). Bacteriologial Peptone L37 (Oxoid) supplemented with synthetic seawater (Colwell & Morita, 1964) was used for.
testing the minimal amount of peptone required for growth. Nutritional requirements of the strains for growth on amino acids as sole source of carbon and nitrogen were performed in synthetic seawater supplemented with 1% amino acid and 1.5% agar as described by Colwell & Morita (1964). All other biological and serological tests were performed as described previously (Benediktsdóttir et al., 1998). Thermometers used to control temperatures in incubators when testing growth at 21 and 25 °C were calibrated according to measurement standard no. G50 075 traceable to the International Temperature Standard (ITS-90).

Virulence. Atlantic salmon pair of approximately 10 g, originating from a smolt-producing facility with no known disease history, were transferred to the experimental facility at least 4 d before challenge. The fish were kept in fresh water at 11 °C. Pathological changes in fish were examined after inoculation with the three strains K56, F57 and 88/478T, but LD\textsubscript{so} was determined for K56 and F57, which were passed serially four times through fish to enhance the virulence. Cultivation of bacteria, determination of viable count and performance of the challenge were carried out as described previously for strain K58 (Benediktsdóttir et al., 1998).

RESULTS

16S rDNA sequence studies

To determine the relationship of *V. viscosus* and *V. wodanis* to other members of the genus *Vibrio* the almost complete 16S rRNA sequences were compared to the *Vibrio* group and the *Pseudoalteromonas* group within the γ-proteobacteria (Maidak et al., 1997). A tree constructed from the matrix of sequence similarities (Fig. 1) demonstrates that *V. viscosus* clusters within the *Pseudoalteromonas* group, whereas *V. wodanis* clusters within the *Vibrio fischeri* assemblage.

As seen in Table 2, *Vibrio viscosus* shows the highest 16S rRNA gene sequence similarity of 99% to the sequence of *M. marina*.

V. wodanis shows the highest 16S rRNA gene sequence similarity of 98.8% to the sequence of *V. logei* CIP 103204 (NCIMB 1143) and forms a distinct cluster with *V. logei* and *Vibrio salmonicida* (Fig. 1). Within this cluster *V. wodanis* represents a distinct branch.

AFLP

Numerical analysis of the AFLP banding patterns allowed the delineation of two main clusters at 40% similarity. All *V. viscosus* strains (n = 30) included in this study grouped together in one cluster and the *V. wodanis* strains, except for K59, formed another cluster (Fig. 2). Reference strains of *M. marina* NCIMB 1144T, *V. logei* NCIMB 2252T and *V. logei* NCIMB 1143 were included, but none of them clustered with the *V. viscosus* or *V. wodanis* strains.

Within the *V. viscosus* strains three subgroups could be distinguished at 75% relationship. One subgroup contained the isolates originating from Norway, while the isolates from Iceland constituted two subgroups and a single strain. Within each subgroup of *V. viscosus* the isolates shared almost identical banding patterns. All the Norwegian isolates were very homogeneous with AFLP genomic patterns, which are characterized by two or three heavy bands. One of the Icelandic subgroups contained strains isolated from salmonids in south-west Iceland, whereas the other subgroup contained four strains isolated from salmonids in north Iceland. F57, isolated from a healthy haddock off the Icelandic coast and identified as *Vibrio alginolyticus*, also formed a distinct cluster with all the *V. viscosus* isolates. The final cluster contained four strains isolated from salmonids in south-west Iceland.

![Fig. 1. Dendrogram derived from the almost complete 16S rRNA sequences of *V. viscosus* (M. viscosa), *V. wodanis* and *Vibrio* reference strains. The tree was constructed from a distance matrix by using the algorithm of DeSoete (1983). The distance matrix was derived from a similarity matrix (data not shown) by using the correction of Jukes & Cantor (1969). *E. coli* was used as the root organism. The numbers are the estimated confidence levels, expressed as percentages, for the positions of the branches, as determined by a bootstrap analysis. Bar, 10% difference between sequences, as determined by measuring the lengths of the horizontal lines connecting two species.](#)
wodanis by biochemical tests and SDS-PAGE clustered among the V. wodanis strains isolated from salmonids.

SDS-PAGE

Numerical analysis of the SDS-PAGE data of 25 V. viscosus strains isolated from diseased fish showed that the V. viscosus strains clustered at 92.8% similarity, but 23 V. wodanis strains clustered at 88.3% similarity. *M. marina* NCIMB 1144T showed an 82.5% relationship with the V. viscosus strains, and V. logei NCIMB 2252T and V. logei NCIMB 1143 showed 84.5% similarity to the V. wodanis cluster (Fig. 3a, b). All V. viscosus strains isolated from salmonids in south-west Iceland and in Norway exhibited an identical SDS-PAGE protein pattern. Four strains isolated in north Iceland showed a pattern that only differed from the main cluster by one protein band, and a third pattern was shown by the strain isolated from a lump sucker, F57. The main difference between clusters of V. viscosus was the presence of a major band of approximately 32 kDa in strains of the main cluster that was lacking in the strains originating in north Iceland and that instead had a broad, approximately 34 kDa band and, in F57, a broad band of 36 kDa. (Fig. 4a).

More strain to strain variability was seen among V. wodanis strains, and subclusters that formed within the V. wodanis cluster were not dependent on the origin of the strains. The main difference within the V. wodanis cluster was the presence or absence of a major protein band between 66 and 90 kDa. (Fig. 4b).

Biochemical tests and growth requirements

Strains of V. viscosus and *M. marina* produced acid from glucose, ribose and N-acetylglucosamine. They did not produce acid from the following carbohydrates: arabinose, cellobiose, glycerol, inositol, lactose, mannitol, melibiose, rhamnose, salicin, sorbitol, sucrose and trehalose. Salmonid strains of V. viscosus originating from south-west Iceland produced acid from mannose and maltose while strains originating from north Iceland and Norway and *M. marina* were negative. All V. viscosus strains and *M. marina* were negative in arginine dihydrolase and ornithine decarboxylase production, and all except the four strains isolated in north Iceland produced lysine de carboxylase.

V. viscosus and *M. marina* degraded gelatin, DNA, Tween 20 and Tween 80. V. viscosus strains degraded starch, and 50% of Norwegian strains and 70% of

Table 2. Levels of 16S rRNA sequence similarity based on a comparison of almost complete 16S rRNA sequences between V. viscosus (M. viscosa), V. wodanis and related Vibrio species

<table>
<thead>
<tr>
<th>Strain (EMBL accession no.)</th>
<th>Percentage 16S rRNA sequence similarity to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. viscosus (M. viscosa)</td>
</tr>
<tr>
<td>Vibrio viscosus (Moritella viscosa)</td>
<td>–</td>
</tr>
<tr>
<td>Pseudoalteromonas haloplanktis ATCC 14393T (X67024)</td>
<td>90.4</td>
</tr>
<tr>
<td>Shewanella algae (X81621)</td>
<td>91.5</td>
</tr>
<tr>
<td>Shewanella putrefaciens (X81623)</td>
<td>91.5</td>
</tr>
<tr>
<td>Shewanella hamedai CIP 103077T (X82132)</td>
<td>91.0</td>
</tr>
<tr>
<td>Shewanella benthica ATCC 43992 (X82131)</td>
<td>92.0</td>
</tr>
<tr>
<td>Moritella marina MP-1T, ATCC 15381T, NCIMB 1144T</td>
<td>99.0</td>
</tr>
<tr>
<td>Ferrimonas balearica DSM 9799 (X93021)</td>
<td>90.9</td>
</tr>
<tr>
<td>Vibrio wodanis</td>
<td>90.1</td>
</tr>
<tr>
<td>Vibrio orientalis CIP 102891T, ATCC 33934T, NCIMB 2195T (X74719)</td>
<td>89.1</td>
</tr>
<tr>
<td>Vibrio furnissii CIP 102972T, ATCC 35016T (X74704)</td>
<td>89.9</td>
</tr>
<tr>
<td>Vibrio salmonicida NCIMB 2262T (X70643)</td>
<td>89.6</td>
</tr>
<tr>
<td>Vibrio logei CIP 103204, ATCC 15382, NCIMB 1143 (X74708)</td>
<td>89.8</td>
</tr>
<tr>
<td>Vibrio piscini CIP 1281T, ATCC 7744T (X74702)</td>
<td>90.2</td>
</tr>
<tr>
<td>Photobacterium piscini MJ-1 (Z21729)</td>
<td>90.0</td>
</tr>
<tr>
<td>Vibrio nigripulchritudo CIP 103195T, ATCC 27043T (X74717)</td>
<td>90.0</td>
</tr>
<tr>
<td>Vibrio alginoptyicus CIP 75.03T, ATCC 17749T (X74690)</td>
<td>89.8</td>
</tr>
<tr>
<td>Vibrio fluvialis NCIMB 2249T, ATCC 33809T, NCIMB 11327T (X74703)</td>
<td>89.9</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>87.3</td>
</tr>
</tbody>
</table>
Icelandic strains of *V. viscosus* were able to degrade chitin.

No *V. viscosus* strain was able to grow at 25 °C, but all grew at 21 and 4 °C. They showed growth on nutrient agar supplemented with 2 and 3% NaCl, but not on nutrient agar supplemented with 1 or 4% NaCl. *M. marina* did not grow at 21 °C nor on nutrient agar supplemented with 2% NaCl. Almost all *V. viscosus* strains and *M. marina* utilized glucose and ribose as sole carbon source, but none could utilize trehalose, except when the trehalose medium was supplemented with 0.001% Casamino acids. All of these were able to grow on media containing 1% peptone in synthetic seawater, but not when the amount of peptone was reduced to 0.5%. When 1% L-proline was used as sole source of carbon and nitrogen, two *V. viscosus* strains could grow but not *M. marina*. No *V. viscosus* strain was able to grow on TCBS medium (Oxoid) and neither did *M. marina*.

The *V. viscosus* strains and *M. marina* showed a zone

Fig. 2. Dendrogram and digitized AFLP patterns of *M. viscosa* (*V. viscosus*) and *V. wodanis* strains and related reference strains.
of inhibition with 150 µg of the vibriostat 0129 but no zone or a very small zone with 10 µg.

All *V. viscosus* strains isolated from salmonids in both countries agglutinated in sera prepared against *V. viscosus* K2, but the single strain F57 did not react with the antisera and neither did *M. marina*.

The *V. wodanis* strains produced acid from glucose, N-acetylglucosamine, ribose, glycerol, maltose and trehalose, and 43% of the strains produced acid from mannitol, 96% from mannose and 78% from sucrose. All strains were negative in acid production from arabinose, cellobiose, lactose and sorbitol.

All *V. wodanis* strains utilized glucose, but an overall heterogeneity was observed in the utilization of ribose, trehalose and L-proline. One *V. wodanis* isolate grew at 1% NaCl, all grew at 2, 3 and 4%, and 16 of the 23 *V. wodanis* isolates grew at 5% NaCl. All *V. wodanis* strains were able to grow on medium containing 1% peptone in synthetic seawater, but 21 of 25 *V. wodanis* strains tested were able to grow on 0.5% peptone. Only 30% of the *V. wodanis* strains showed growth on TCBS agar. In none of the tests was grouping of *V. wodanis* according to geographical origin noted, except growth at 25 °C: 13 of 14 *V. wodanis* strains isolated in Iceland did not grow at 25 °C, while seven of nine *V. wodanis* strains isolated in Norway did.

Challenge tests

All fish challenged with 1·1 × 10³ c.f.u. or more of K56 died, as did four of ten fish challenged with 1·1 × 10² c.f.u. All fish challenged with 5·5 × 10⁷ c.f.u. of F57 died, and so did nine, one and no fish challenged with 5·5 × 10⁶, 5·5 × 10⁵ and 5·5 × 10⁴, respectively, with the LD₅₀ calculated to be 1·7 × 10⁶ c.f.u.

Pathology

The skin colour of affected fish receiving all three strains became darker around the injection site and subsequently turned greyish with necrotic skin and occasionally slight petechial haemorrhaging. Generally there was liquefactive necrosis with a varying degree of haemorrhaging in the underlying muscle. Internal organs, especially the liver of fish receiving strain F57, were frequently pale. Internal lesions of fish receiving strains 88/478T and K56 were characterized
E. Benediktsdóttir and others

DISCUSSION

Molecular characterization by AFLP offers a high degree of discrimination and the results presented here demonstrate its use in epidemiological analysis. The present results of the AFLP analysis indicate a clear correlation between the grouping and the origin of the *V. viscosus* strains: almost identical patterns of strains of *V. viscosus* appeared according to their geographical location of isolation. This indicates a common clonal origin of *V. viscosus* within particular geographical areas (Ørskov & Ørskov, 1983) and that clones of *V. viscosus* are spread within fish farms and even between farms within a given geographical area.

Strains originating in Iceland grouped into two clusters and a single strain that were more related to each other than to strains originating in Norway, which only clustered into one group. The isolates from Norway that were included in the AFLP analysis originated from 62 to 65 °N, but isolates from other geographical areas or isolates originating from sources other than salmonid fish would probably give another pattern. The differences between the AFLP clusters were reflected by differences in one to three biochemical tests and within each AFLP group strains were biochemically homogeneous. The difference between the two groups isolated in Iceland was detected by SDS-PAGE protein profile analysis, but not the difference between the genetically less related groups of strains of *V. viscosus* originating in Norway and south-west Iceland. The homogeneous results from the SDS-PAGE protein profile analysis make this method well suited for species identification.

Representatives of the two AFLP groups of *V. viscosus* isolated in south-west Iceland and in Norway have been shown to be virulent for salmonid fish (Benediktsdóttir et al., 1998; Lunder et al., 1995). In this study a representative of the AFLP group isolated in north Iceland was shown to be virulent as well and the pathological symptoms were the same. A single strain isolated from the gills of a healthy lump sucker, was low- or non-virulent, indicating the existence of non-virulent clones of *V. viscosus* in the environment.

Results from AFLP, SDS-PAGE and biochemical tests indicate that *V. wodanis* found in winter ulcers is a defined but heterogeneous species, not showing any sign of clonal spread that is often characteristic of primary pathogens. This result is consistent with challenge tests with these bacteria performed separately in Norway and Iceland that did not indicate any pathogenicity to salmon parr (Lunder et al., 1995; Benediktsdóttir et al., 1998). However, the independent and repeated findings of *V. wodanis* in winter ulcers in Norway, Iceland and Scotland indicate strongly that *V. wodanis* is an important opportunistic pathogen.

Fig. 4. SDS-PAGE protein profiles of whole cells. (a) Lanes: 1 and 7, molecular mass markers; 2, F57; 3, K56; 4, K58; 5, *V. viscosus* (*M. v incessa*) NVI 88/478T; 6, *M. marina* NCIMB 1144T. (b) Lanes: 1 and 7, molecular mass markers; 2, *V. logei* NCIMB 2252T; 3, *V. wodanis* NVI 88/441T; 4, 95/325; 5, K59; 6, K32.

by rather heavy disseminated haemorrhages in the liver, sometimes with diffuse and heavy petechial haemorrhages in the perivisceral fat around the pyloric caeca and frequently with mucosal and submucosal disseminated haemorrhages of the small intestines and the pyloric area. These changes were not seen in fish receiving strain F57.
Colwell & Morita (1964) reported growth of on agar media with and without blood, using an observed at this laboratory, with repeated testing both strains in 0wodanis Shewanella \textit{V} to a separate genus.

are needed to determine if they should be transferred tests for vibrios. Faint growth of two strains of grow in salt-supplemented Hugh and Leifson's OF agar was observed and not all strains of \textit{V viscosus} on TCBS agar was observed and not all strains of \textit{V. wodanis} could grow on TCBS. The growth of \textit{V. viscosus} and of \textit{V. wodanis} in different salt concentrations observed in this study is inconsistent with the results of Lunder et al. (2000) who reported growth of the \textit{V. viscosus} strains in 1–4\% NaCl and of the \textit{V. wodanis} strains in 0.5–5\% NaCl. They also reported growth of \textit{V. viscosus} strains at 25 \degree C that was not observed at this laboratory, with repeated testing both on agar media with and without blood, using an incubator controlled with a calibrated thermometer.

Colwell & Morita (1964) reported growth of \textit{M. marina} ATCC 15381\textsuperscript{T} (NCIMB 1144T) on proline after the first isolation of this species. The strain seems to have lost this property: no growth of \textit{M. marina} and growth of only two strains of \textit{V. viscosus} was observed using proline as sole source of carbon and nitrogen. However, the invariant results obtained from the utilization tests in this study indicate that these kinds of tests should be used with great caution for \textit{M. marina} and \textit{V. viscosus}. Both species often render themselves non-cultivable after being kept on an agar or broth medium for some time, resulting in possible false negative results.

The sequencing of 16S rRNA of \textit{V. wodanis} revealed that this species clusters within the \textit{V. fischeri} assemblage. \textit{V. fischeri} and \textit{V. logei} are formerly members of the genus \textit{Photobacterium} (Bang et al., 1978), but were transferred to the genus \textit{Vibrio} because evolutionary divergence was indicated by amino acid sequencing of the glutamine synthetase and superoxide dismutase enzymes (Baumann & Baumann, 1980). 16S rRNA sequences indicate that these species, including \textit{V. wodanis}, are more related to each other than to other bacteria of the \textit{Vibrio} genus, but further studies are needed to determine if they should be transferred to a separate genus.

\textit{V. viscosus} clustered within the \textit{Pseudoalteromonas/ Shewanella} group and it shared 99\textperthousand 1\% similarity to \textit{M. marina}. We therefore propose that \textit{Vibrio viscosus} should be reclassified and renamed \textit{Moritella viscosa} comb. nov.

\textit{M. viscosa} has a thymine–thymine insertion between bases 206 and 207 (Escherichia coli numbering), supporting the suggestion of Urakawa et al. (1998) that this is a feature that distinguishes \textit{Moritella} species from other close taxa.

One barophilic strain included in the study of Urakawa et al. (1998) has been described as a new species, \textit{Moritella japonica} (Nogi et al., 1998). This strain differs from the \textit{M. viscosa} strains in acid production from glycerol and its total resistance to 0129. \textit{M. viscosa} is the only species of the genus at present that is associated with fish and is virulent. Other strains were isolated from water or sediment at depths from 500 to 8600 m and at temperatures between 1 and 11 \degree C (Urakawa et al., 1998). A common property of \textit{Moritella} strains is their psychrophily: 15 strains designated MP and described by Colwell & Morita (1964) as \textit{M. marina} were all psychrophilic and did not grow at temperatures above 24 \degree C. Urakawa et al. (1998) reported that the 11 \textit{Moritella} strains they isolated were psychrophiles.

Description of Moritella viscosa comb. nov.

\textit{Moritella viscosa} (vis.co.sa. L. fem. adj. viscosa viscous, because of its thread-forming, adherent colonies).

The description of \textit{Moritella viscosa} comb. nov. is identical to the description given for \textit{Vibrio viscosus} by Lunder et al. (2000). In addition, the production of lysine decarboxylase and the production of acid from maltose and mannose are different, depending on subgroups. \textit{M. viscosa} is partially sensitive to 0129, showing a very small or no clear zone around a disc containing 10 \textmu g 0129 and negative for growth on TCBS agar. The type strain is NVI 88/478T.

ACKNOWLEDGEMENTS

We thank the Laboratory of Microbiology, University of Ghent, for hosting E.B. for 2 months. We also thank Dirk Dewettinck, Sylvie Van Eygen and Agústa Jónsdóttir for excellent technical assistance. This work was supported by the Research Fund of the University of Iceland and the Research Council of Iceland.

REFERENCES

