Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria

Ronald M. Weiner,1,2 Meredith Melick,1 Kathleen O’Neill2 and Ernesto Quintero3

Three strains of prosthecate, budding bacteria, MHS-2T, MHS-3T and VP6T, were isolated from marine habitats including the open ocean (the pelagic zone), the offshore region (the neritic zone) and the hydrothermal vent region. A polyphasic approach including 16S rDNA sequencing, phenotypic analyses, serology, fatty acid analyses, membrane protein profiles and DNA–DNA hybridizations was used to place these strains in the genus Hyphomonas, a taxon of the α-Proteobacteria. The results of these analyses also showed that strains MHS-3T, MHS-2T and VP6T each represent a new species of Hyphomonas. The names Hyphomonas adhaerens (type strain MHS-3T, ATCC 43965T), Hyphomonas johnsonii (type strain MHS-2T, ATCC 43964T) and Hyphomonas rosenbergii (type strain VP6T, ATCC 43869T) are proposed for the new species. With these additions, Hyphomonas now contains eight species.

Keywords: Hyphomonas, prosthecate, budding bacteria, biofilm, marine bacteria

INTRODUCTION

Hyphomonas, along with Pedomicrobium, Hyphomicrobium, Rhodomicrobium (Urakami & Komaga, 1987) and Hirschia (Schlesner et al., 1990), belongs to the budding/prosthecate bacteria (Fig. 1), a heterogeneous group in the α-Proteobacteria (Stackebrandt et al., 1988) which includes more than 50 genera, including Agrobacterium, Rhodobacter, Nitrobacter and Rhizobium. This report adds three species to Hyphomonas and amends the description of the genus.

Pongratz (1957) first described the genus *Hyphomonas* upon isolating a budding, prosthecate bacterium from the nasal mucus of a diver with infectious sinusitis. It was subsequently named *Hyphomonas polymorpha*. It was given a new genus designation (Liefson, 1964) because, although morphologically similar to *Hyphomicrobium* (Stützer & Hartleb, 1898) and *Rhodomicrobium* (Duchow & Douglas, 1949), it was physiologically different. Since 1957, four additional species have been added to the genus. *Hyphomonas neptunium* was moved from *Hyphomicrobium* to *Hyphomonas* on the basis of DNA homology (Moore et al., 1984) and physiology (Havenner et al., 1979). *Hyphomonas oceanitis*, *Hyphomonas jannaschiana* and *Hyphomonas hirschiana* were added in 1985 (Weiner et al., 1985). All of the species thus far classified as *Hyphomonas* have been isolated from diverse marine or estuarine econiches.

On the basis of nearly identical biphasic, morphogenic life cycles, it was believed that *Hyphomonas* shared a very close relationship with *Hyphomicrobium*. Differentiation of *Hyphomicrobium* and *Hyphomonas* by means of morphology, DNA base composition (57–65 mol% G+C; Gebers et al., 1984, 1985; Mandel et al., 1972) and genome size (Kolbel-Boelke et al., 1985; Moore & Hirsch, 1973) did not dispel this notion. The only obvious phenotypic differences were that *Hyphomicrobium* species utilized one-carbon compounds for carbon and energy (Hirsch, 1974; Harder et al., 1975), whereas *Hyphomonas* species catabolized

Abbreviation: MPPI, membrane protein profile index.

The GenBank accession numbers for the *Hyphomonas* sequences reported in this paper are as follows: H. adhaerens MHS-3T, AF082790; H. hirschiana VP9, AF082794; H. jannaschiana VP1, AF082799; H. jannaschiana VP2, AF082789; H. jannaschiana VP3, AF082792; H. jannaschiana VP4, AF082793; H. johnsonii MHS-2T, AF082791; H. neptunium LE670, AF082798; H. oceanitis SCh89, AF082797; H. polymorpha PR727, AF082796; H. rosenbergii VP6T, AF082795.
Hyphomonas markably, more closely related to Hyphomonas Boelke genome size and nucleotide distribution (Kolbel-content of the DNA (mol%) was plotted against bacter genera, i.e. 1984) of many prosthecate bacteria into one of three phenotypically based placements (Moore & Weiner, Molecular taxonomic approaches have supported the requirement for "proteins, peptides and amino acids and had an absolute requirement for > 1% marine salt formulations (Pongratz, 1957; Havener et al., 1979; Moore et al., 1984).

Molecular taxonomic approaches have supported the phenotypically based placements (Moore & Weiner, 1984) of many prosthecate bacteria into one of three genera, i.e. Hyphomicrobium, Hyphomonas or Caulobacter. The initial confirmation came when the G+C content of the DNA (mol%) was plotted against genome size and nucleotide distribution (Kolbel-Boelke et al., 1985; Gebers et al., 1985). rRNA-cistron similarities (Moore, 1977; Roggentin & Hirsch, 1989), DNA–DNA hybridization data (Moore & Hirsch, 1972; Gebers et al., 1986) and quinone, fatty acid, hydroxy fatty acid and phospholipid profiles (Sittig & Hirsch, 1992; Sittig & Schlesner, 1993) also justified (or did not contradict) the placements.

Recent taxonomic studies based on 16S rDNA analyses have revealed that the marine 'evolutionary line of descent' (Stahl et al., 1992) of Caulobacter species demonstrates a closer relationship with Hyphomonas species than that between Hyphomicrobium species and Hyphomonas. Also, saltwater caulobacters are, remarkably, more closely related to Hyphomonas than they are to freshwater caulobacters (Stahl et al., 1992). Thus, marine physiology (i.e. the ability to pass macromolecules through a prosthecum to progeny buds) may be a more unifying criterion than cell biology.

Prosthecate- and budding bacteria are widespread in natural ecosystems (Moore, 1981) and may represent up to one-third of the total microbial biomass of some ecosystems (Hirsch, 1974; Nikitin & Nikitina, 1978). They are found in environments as diverse as Antarctic sea ice (Bowman et al., 1997), fresh water (Staley et al., 1980), ocean hydrothermal vents (Jannasch & Wirson, 1981) and soils (Hirsch, 1974). Many prosthecate species are oligotrophic (Poinexter, 1981) and evolutionarily remote from eutrophic bacteria (Nikitin et al., 1990).

Some of the prosthecate bacteria, in particular, Hyphomonas and Caulobacter, have been implicated as primary colonizers on submerged surfaces in the marine environment (Baier et al., 1983). They are not readily isolated though they can be well represented (Weidner et al., 1996). They have been at the forefront of several recent and ongoing studies involving their role in biofilm formation mediated by production of localized-capsule, extracellular, polymeric substances (holdfasts; see Quintero & Weiner, 1995; Frolund et al., 1996; Baty et al., 1996; Stahl et al., 1992). Some of these biofilms have been shown to mediate invertebrate set (macrofouling; see Chang et al., 1996). The mechanism of DNA segregation and the cell biology of capsule formation have also been elucidated recently (Langille & Weiner, 1998; Quintero et al., 1998; Zerfas et al., 1997).

Hyphomonas species have a stereotypical biphasic life cycle (Wali et al., 1980), a G+C DNA content of 57–64 mol%, an optimum temperature range of 22–37 °C, a requirement for sea salts, a characteristic fatty acid fingerprint with octadecenoic acid (18:1) as the major fatty acid. Most species grow only with proteins, peptides and/or amino acids and synthesize Q11 as the major quinone (Urakami & Komagata, 1987). Here we add the DNA–DNA overall similarity values and 16S rDNA sequence matrices of all reported species of Hyphomonas to clarify the taxonomy of Hyphomonas; these and other criteria show that three additional isolates, MHS-2T, MHS-3T and VP6T, each represent a new species.

METHODS

Strain and culture conditions. The strains used in this study are listed in Table 1. Hyphomonas neptunium, Hyphomonas jannaschiana, Hyphomonas hirschiana, Hyphomonas oceanitis and Hyphomonas polymorpha were maintained at
Three new species of Hyphomonas

Table 1. Source of Hyphomonas type strains used in this study

<table>
<thead>
<tr>
<th>Hyphomonas species</th>
<th>Strain designation</th>
<th>ATCC no.</th>
<th>Temp. (°C)</th>
<th>Isolation source</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. polymorpha</td>
<td>PS728T</td>
<td>33881</td>
<td>30</td>
<td>Nasal mucosa of diver</td>
</tr>
<tr>
<td>H. jannaschiana</td>
<td>VP2T</td>
<td>33882</td>
<td>30</td>
<td>Galapagos vent area</td>
</tr>
<tr>
<td>H. hirschiana</td>
<td>VP5T</td>
<td>33886</td>
<td>25</td>
<td>Galapagos vent area</td>
</tr>
<tr>
<td>H. oceanitis</td>
<td>SCH89T</td>
<td>33879</td>
<td>25</td>
<td>Baltic Sea</td>
</tr>
<tr>
<td>H. neptunium</td>
<td>LE670T</td>
<td>15444</td>
<td>30</td>
<td>Barcelona Harbour</td>
</tr>
<tr>
<td>H. johnsonii sp. nov.</td>
<td>MHS-2T</td>
<td>43964</td>
<td>30</td>
<td>Mud slough</td>
</tr>
<tr>
<td>H. adhaerens sp. nov.</td>
<td>MHS-3T</td>
<td>43965</td>
<td>30</td>
<td>Mud slough</td>
</tr>
<tr>
<td>H. rosenbergii sp. nov.</td>
<td>VP6T</td>
<td>43869</td>
<td>30</td>
<td>Guayasmas vent region</td>
</tr>
</tbody>
</table>

—70 °C in our laboratory. Two of the three strains, belonging to the newly proposed species, were originally isolated and donated by J. Smit. Strain VP6T was obtained from H. Jannasch. These strains were deposited in the American Type Culture Collection and also maintained in our laboratory at —70 °C.

Bacto Marine Broth 2216 (MB; Difco) was used for the routine culture of all strains. Solid marine media (MA) contained 2% Bacto agar (Difco). Working stock cultures were maintained on slants at 4 °C. For characterizations, all strains were grown with aeration at 25, 30 or 37 °C and harvested during the exponential phase of growth. Growth was measured turbidimetrically. It was verified microscopically that the culture consisted of pure prosthecate/budding and swarm cells. Species purity was confirmed serologically.

Biochemical tests. The pH and temperature requirements were examined using MB. Salt requirements were determined using variable amounts of Instant Ocean (IO; Aquarium Systems). Bacto-peptone at 0.5% and yeast extract at 0.1% (Difco). The NaCl concentration requirements were determined by using 30% MB and adding increments of NaCl. The biochemical tests were done as described by Smibert & Krieg (1981), except that IO was used instead of sodium chloride at a final concentration of 2.5%. Phenotypic tests included those for oxidase, urease, catalase, DNase, coagulate, gelatin hydrolysis, starch hydrolysis, citrate utilization, indole production, hydrogen sulfide production, gas from glucose, acid from mannose, sucrose, fructose, glucose, galactose and triple iron sugar, haemolysis on sheep-blood agar and nitrate reduction. The reagents were obtained from Sigma.

Inhibitors. The methods used for susceptibility testing were as described previously (Weiner et al., 1985). Tester strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as standard controls. Streptomycin and penicillin Sensi-discs were obtained from BBL. Novobiocin, ampicillin and other inhibitory substances were purchased from Sigma and used to impregnate sterile blank discs at known concentrations. Inhibition by 1-0% Tween 80 was determined by incorporating it into the MA.

Fatty acid methyl ester analysis. All strains (Table 1) were grown at 27 °C and harvested during the late-exponential phase of growth. Fatty acids were processed and analysed according to the methods of Lechevalier & Lechevalier (1988).

Electrophoretic pattern of cell envelope protein. Cell envelope purification, membrane protein purification, SDS-PAGE and membrane protein profile index (MPPI) calculations were done as described previously (Dagasan & Weiner, 1986).

Serology. Rabbit antisera were produced against all strains, using formalin-killed cells harvested during the late-exponential phase of growth in MB as the antigens. The antisera were processed as described previously (Langille & Weiner, 1998). The antigenic similarities of all Hyphomonas strains were tested against each antiserum using the ELISA with low-binding, easy-wash assay plates (Corning Glass Works). The secondary antibody was peroxidase-conjugated goat anti-rabbit (Sigma). Serological similarities (%) among strains of Hyphomonas were calculated as (log of heterologous titre/log of homologous titre) x 100. The ELISA readings were taken at an optical density of 1.5 (at an absorbance wavelength of 490 nm) using a Lambda Reader (Perkin-Elmer).

DNA isolation, preparation and hybridization. DNA was isolated by using a variation of the Marmur (1961) procedure involving an extra phenol purification step. The purity of the DNA was determined spectrophotometrically and was considered acceptable with ratios of 1.75–1.85, 260/280 nm. The G + C content (mol%) was calculated from the thermal melting point (Tm) according to the methods of Johnson (1994). For the DNA–DNA hybridization studies, DNA was prepared, iodinated and analysed for overall similarity using the S1 Homology DNA free-solution hybridization technique described by Johnson (1994) and incorporating 125I according to the procedures of Werman et al. (1996).

PCR amplification and cloning. rRNA genes (rDNA) were amplified by the PCR, using the universal 16S rRNA (rRNA) primer 1392R (5'-ACGGGCGGTTGTCG-3') and the bacterial primer 27F (5'-AGAGTTTGATCMTG- GCTGAG-3') (the numbers of the primers correspond to E. coli positions; R = purine, M = A, C). The PCR was performed using 40 pmol of each primer, 10 mM Tris/HCl.
and the mechanism of rosette formation (or lack thereof) of Hyphomonas MHS-3T and VP6T have been reported (Langille & Weiner, 1998; Quintero & Weiner, 1995).

VP6T had a broader optimum growth temperature (25–45 °C) than the other two new strains (25–37 °C). It also produced a reddish brown pigment (a pyomelanin; Kotob et al., 1995). Of all the strains of Hyphomonas, only MHS-2T used sugars as the sole carbon source for growth. Each of the three new isolates was oxidase-positive, catalase-positive and urease-negative. None hydrolysed starch or gelatin or utilized citrate. None produced indole or hydrogen sulfide.

None of the more recently acquired strains phenotypically matched closely enough with any of the extant Hyphomonas spp. to be considered an additional strain in an existing species. However, it would have been extremely difficult to identify properly the new strains to species using only phenotypic methods. The phenotypes, particularly the biphasic life cycle, the requirement for marine salts and the preferential utilization of peptone, were valuable in placing these strains in Hyphomonas.

RESULTS AND DISCUSSION

Phenotypic characteristics

The phenotypic characteristics of *Hyphomonas* strains MHS-2T, MHS-3T and VP6T are summarized in Table 2. Each shared genus specific characteristics, e.g. prosthecate-budding morphology and a requirement for sea salts, yet were clearly different from one another. The fine structure, the colonial morphology and the mechanism of rosette formation (or lack thereof) of *Hyphomonas* MHS-3T and VP6T have been reported (Langille & Weiner, 1998; Quintero & Weiner, 1995).

Table 2. Phenotypic characteristics and G + C content of the DNA of newly proposed species of Hyphomonas

The following characteristics applied to all three species: growth in broth was granular/ropy; cells grew in peptone as the sole carbon source; and cells were susceptible to streptomycin (10 µg) and SDS (0.2 mg) but resistant to neutral red (80 µg) and Tween 80 (1.0%). Abbreviations: VS, very susceptible (diameter of inhibition zone, > 20 mm); S, susceptible (diameter of inhibition zone, 10–20 mm); R, resistant (diameter of inhibition zone, < 10 mm).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>H. adhaerens MHS-3T</th>
<th>H. johnsonii MHS-2T</th>
<th>H. rosenbergii VP6T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal temp. for growth (°C)</td>
<td>25–37</td>
<td>25–37</td>
<td>25–45</td>
</tr>
<tr>
<td>Ocean salts growth range</td>
<td>15–12.0</td>
<td>15–6.0</td>
<td>10–12.0</td>
</tr>
<tr>
<td>Film formation on growth vessel</td>
<td>+ + +</td>
<td>++ / +</td>
<td>+ +</td>
</tr>
<tr>
<td>Optimal pH range</td>
<td>5.7–8.7</td>
<td>5.7–8.1</td>
<td>5.7–8.9</td>
</tr>
<tr>
<td>Haemolysis on sheep-blood agar</td>
<td>Gamma</td>
<td>Alpha</td>
<td>Gamma</td>
</tr>
<tr>
<td>Rosette formation</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pyomelanin production</td>
<td>+ / −</td>
<td>+ / −</td>
<td>+</td>
</tr>
<tr>
<td>Susceptibility to:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novobiocin (30 µg)</td>
<td>S</td>
<td>S</td>
<td>VS</td>
</tr>
<tr>
<td>Penicillin (10 U)</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Ampicillin (10 µg)</td>
<td>R</td>
<td>S</td>
<td>VS</td>
</tr>
<tr>
<td>Tellurite (0.1 mg)</td>
<td>VS</td>
<td>VS</td>
<td>S</td>
</tr>
<tr>
<td>Crystal violet (40 µg)</td>
<td>S</td>
<td>VS</td>
<td>S</td>
</tr>
<tr>
<td>Brilliant green (40 µg)</td>
<td>S</td>
<td>VS</td>
<td>S</td>
</tr>
<tr>
<td>Methylene blue (2.0 mg)</td>
<td>VS</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Neutral red (160 µg)</td>
<td>S</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Methyl violet (16 µg)</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Growth in glucose*</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>DNA G + C content (mol%)†</td>
<td>60</td>
<td>64</td>
<td>61</td>
</tr>
</tbody>
</table>

* Sole carbon source.
† This study and personal communication (R. Gherna).
Table 3. Fatty acid profiles of *Hyphomonas*

Total fatty acid values are rounded up to the nearest one per cent of total detected fatty acids. Abbreviations: SH, Sittig & Hirsch (1992) (cells harvested in the late-exponential phase at 25 °C); TS, this study (cells harvested in the late-exponential phase at 27 °C); UK, Urakami & Komagata (1987) (cells harvested during stationary phase at 30 °C); ND, no data.

<table>
<thead>
<tr>
<th>Species/strain</th>
<th>Reference Method</th>
<th>Total fatty acids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n15:0</td>
<td>n16:0</td>
</tr>
<tr>
<td>H. neptunium LE670T</td>
<td>SH</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>8</td>
</tr>
<tr>
<td>H. polymorpha PS728T</td>
<td>SH</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>10</td>
</tr>
<tr>
<td>H. oceana SCH89T</td>
<td>SH</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>0</td>
</tr>
<tr>
<td>H. jannaschiana VP2T</td>
<td>SH</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>1</td>
</tr>
<tr>
<td>H. hirschiana VP5T</td>
<td>SH</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>1</td>
</tr>
<tr>
<td>H. johnsonii sp. nov. MHS-2T</td>
<td>TS</td>
<td>0</td>
</tr>
<tr>
<td>H. adhaerens sp. nov. MHS-3T</td>
<td>TS</td>
<td>0</td>
</tr>
<tr>
<td>H. rosenbergii sp. nov. VP6T</td>
<td>TS</td>
<td>2</td>
</tr>
</tbody>
</table>

G + C content

Table 2 shows the G + C content of MHS-2T, MHS-3T and VP6T to be between 60 and 64 mol%, strains MHS-3T and VP6T falling within the existing range of *Hyphomonas* species. The G + C content of strain MHS-2T was 2 mol% higher than that of any other strain of *Hyphomonas*.

Fatty acid profiles

There are three separate studies on the fatty acid profiles of all but the newly proposed species of *Hyphomonas* and the results are included for purposes of comparison (Table 3). There was a consensus on most, but not all, profiles among the three studies. Variance was attributed to different conditions of cultivation, especially temperature and the phase of growth at harvesting. This study and that of Sittig & Hirsch (1992) harvested cells under similar conditions and the results are generally in good agreement.

Sittig & Hirsch (1992) and Urakami & Komagata (1987) examined several genera of budding/prosthecate bacteria, including *Hyphomonas*. *Hyphomicrobium* spp. were found to contain, on average, approximately 75% octadecenoic acid, while all the other fatty acids constituted only 0.2–13.2% of the total. *Hyphomonas* was the only genus, among the budding/prosthecate bacteria studied, in which some species, e.g. *Hyphomonas neptunium* and *Hyphomonas polymorpha*, contained higher amounts of heptadecanoic (17:0) and heptadecenoic acids (17:1) than octadecenoic acid (18:1; Sittig & Hirsch, 1992). In fact, species of *Hyphomonas* contained a mean of 50% octadecenoic acid as opposed to approximately 75% for species of *Hyphomicrobium*.

Like the analyses of phenotype and G + C content, the fatty acid profiles did not preclude placement of the new isolates into *Hyphomonas*. Indeed, they supported such placement. All *Hyphomonas* species synthesized high percentages of octadecenoic acid (18:1; Table 3), albeit in varying amounts. These ranged from 11% in *Hyphomonas jannaschiana* to 80% in MHS-3T, a value exceeding those of all extant *Hyphomonas* species but correlating well with those of most other budding/prosthecate bacteria (i.e. *Rhodomicrobium*, *Pedomonibium* and *Hyphomicrobium*; Urakami & Komagata, 1987; Sittig & Hirsch, 1992). *Hyphomonas* was also found to contain novel lipids (Batrakov et al., 1996).

Membrane protein

Under defined growth parameters, the membrane protein content of bacteria is characteristic for each species (Dagasan & Weiner, 1986) and therefore serves as a useful taxonomic tool (Vauterin et al., 1993). *Hyphomonas* species synthesized at least four outer membrane proteins with high apparent molecular masses (> 100 kDa), which is a distinguishing characteristic of this genus (Shen et al., 1989; Dagasan &
80% MPPI similarity with the other species of Hyphomonas, suggesting their placement in Hyphomonas as unique species. MHS-3^T (lanes 10–12) and VP6^T (lanes 5–7) synthesized substantial amounts of a Hyphomonas signature protein (approx. 46–48 kDa; Dagasan & Weiner, 1986). MHS-2^T (lane 9) had the most unique protein profile and, unlike all the other strains, did not synthesize a very high-copy-number protein. It did, however, synthesize genus-typical (Dagasan & Weiner, 1986) 31 and 36 kDa proteins.

Serology

Table 4 shows the serological relatedness of the more recently isolated strains of Hyphomonas to one another and to the extant strains. The homologous reaction was set to 100% similarity and negative controls had less than 45% similarity. Different strains of the same species normally had >75% similarity. Like the MPPI and phenotypes, the results must be considered in the larger framework of the molecular analyses. Only exposed antigens of whole cells would react with the strain-specific polyclonal antiserum and even these can be masked by the synthesis of surface structures such as capsules.

MHS-2^T, MHS-3^T and VP6^T were related to the other species, averaging 55 ± 10%, 58 ± 12% and 52 ± 12% similarity, respectively. Hyphomonas polymorpha and Hyphomonas oceanitis had the least serological identity with the new isolates, while Hyphomonas jannaschiana and Hyphomonas neptunium, having higher growth temperature capabilities, generally had more serological similarity to one another than to other strains. As with the MPPI, this measure of serological relatedness was useful in identifying isolates as members of the genus Hyphomonas (Bowden, 1993) and, in some cases, in matching the most closely related strains (same species); however, it was not useful in determining the relatedness of different species of Hyphomonas to one another.

Monoclonal antibodies against the lipopolysaccharide of Hyphomonas strain MHS-3^T did not cross-react with that of any of the other 12 strains of Hyphomonas. This is consistent with the considerable antigenic variability that is characteristic of LPS (DeWeger et al., 1987).

DNA–DNA hybridization

Table 5 shows the results of hybridization between each extant Hyphomonas species and each of the newly proposed species. These results were in >90% agreement with those of previous studies (only Hyphomonas polymorpha and Hyphomonas neptunium were previously tested; Moore & Hirsch, 1972; Gebers et al., 1984). Of the new isolates, MHS-3^T had the highest overall DNA–DNA similarity (66%) with another species, namely Hyphomonas neptunium. A guideline for the inclusion of different strains within the same
Table 5. DNA homologies of the eight Hyphomonas species

Results were calculated as the relationship shown by at least three separate experiments, averaging six values including the reciprocal. All the values listed are combined means from the reciprocal hybridizations, which are within 10% of one another.

<table>
<thead>
<tr>
<th>Strain</th>
<th>MHS-3T</th>
<th>LE670T</th>
<th>MHS-2T</th>
<th>VP5T</th>
<th>SCH89T</th>
<th>VP1</th>
<th>PS728T</th>
<th>VP6T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. adhaerens sp. nov. MHS-3T</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. neptunium LE670T</td>
<td>66</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. johnsonii sp. nov. MHS-2T</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. hischiana VP5T</td>
<td>19</td>
<td>54</td>
<td>12</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. oceania SCH89T</td>
<td>11</td>
<td>12</td>
<td>23</td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. jannaschiana VP1</td>
<td>41</td>
<td>32</td>
<td>18</td>
<td>23</td>
<td>26</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. polymorpha PS728T</td>
<td>32</td>
<td>27</td>
<td>13</td>
<td>34</td>
<td>28</td>
<td>8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>H. rosenbergii sp. nov. VP6T</td>
<td>30</td>
<td>11</td>
<td>21</td>
<td>19</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

Species has been proposed to be $\geq 70\%$ homology (Johnson, 1984). In comparison, Hyphomonas hischiana averaged 26% homology and Hyphomonas jannaschiana averaged 22% homology with the other species of Hyphomonas.

MHS-2T was the most distantly related new strain, yet falling, in most cases, within 20% overall DNA–DNA homology. The hybridization data were consistent with other criteria, such as the membrane protein profile and phenotypic characteristics, in placing MHS-2T as a new, more outlying, species of Hyphomonas.

Phylogenetic relationships

The 16S rDNA nucleotide sequences of strains MHS-2T (1301 nucleotides), MHS-3T (1334 nucleotides), VP6T (1354 nucleotides), as well as the extant species PS728 (1309 nucleotides), VP1 (1352 nucleotides), VP2 (1368 nucleotides), VP3 (1351 nucleotides), VP4 (1354 nucleotides), VP5 (1354 nucleotides), SCH89 (1309 nucleotides) and LE670 (1316 nucleotides), were determined and deposited in the GenBank database.

Fig. 3 shows the similarity levels for the three newly proposed species and the five extant species. For Hyphomonas jannaschiana all four strains were included. Hyphomonas jannaschiana VP1 and MHS-3T had been previously sequenced (Stahl et al., 1992), in each case having $>99.4\%$ similarity with the same strain in this study.

The five existing and three proposed species had signature sequences that placed them in the α-Proteobacteria (Stackebrandt et al., 1988). Each was related to the other above the 96% similarity level. A member of the most closely related genus, Hirschia (Schlesner et al., 1990), was related to each of the strains of Hyphomonas at the 90±1% similarity level. The 16S rDNA sequence data supported previous findings that Hyphomonas, a genus of marine bacteria, is more closely related to the marine line of Caulobacter than to terrestrial, budding, prosthecate genera (e.g. Hyphomicrobium; Fig. 3).

Clearly, each of the new isolates (strains MHS-2T, MHS-3T and VP6T) belong in the genus Hyphomonas. In addition to 16S rDNA sequences and phenotypic characteristics, the DNA reassociation values, the MPPI, the serological identities and the fatty acid analysis all support the placements of these isolates. The DNA–DNA reassociation values provided the best (but not the only) criteria by which the strains were shown to represent three distinct and new species. None of these strains had reassociation values $>66\%$ with any extant species, while all showed some DNA–DNA similarity. Thus, it is proposed that Hyphomonas should be revised by the addition of three new species, bringing the total to eight species comprising 13 strains.

Interrelationship of Hyphomonas species based on genetic similarity

The phylogenetic tree (Fig. 3) shows the relationships between each of the species of Hyphomonas according to 16S rDNA sequence analysis. Hyphomonas rosenbergii sp. nov., Hyphomonas hischiana, Hyphomonas polymorpha and Hyphomonas neptunium clustered at the 99.4% similarity level. Hyphomonas adhaerens sp. nov. and Hyphomonas jannaschiana (99.3%) and, as expected, each of the strains of Hyphomonas jannaschiana were related at a high level (99.3%) as well. Hyphomonas johnsonii sp. nov. was most closely related to Hyphomonas oceania (a 98.7% similarity level) but otherwise neither of these species was closely related to other species of Hyphomonas. The bootstrapping analyses support these placements (Fig. 3).

Thus, the 16S rDNA sequence analyses divide the eight species of Hyphomonas into: (i) a tight group of four species, i.e. Hyphomonas rosenbergii sp. nov., Hyphomonas hischiana, Hyphomonas polymorpha and Hyphomonas neptunium; (ii) a group with two species, i.e. Hyphomonas adhaerens sp. nov. and Hyphomonas jannaschiana; and (iii) a less tight group of two species, i.e. Hyphomonas johnsonii sp. nov. and Hyphomonas oceania. Likewise, the DNA–DNA hybridization data show Hyphomonas neptunium to be closely related...
to *Hyphomonas hirschiina* and support both of the two species groupings, i.e. *Hyphomonas adhaerens* sp. nov. and *Hyphomonas jannaschiana* plus *Hyphomonas johnsonii* sp. nov. and *Hyphomonas oceanitis*. On the other hand, the DNA–DNA hybridization data suggest that *Hyphomonas neptunium* forms a tighter relationship with *Hyphomonas adhaerens* sp. nov. on the basis of DNA–DNA homology values than on the basis of 16S rDNA sequence comparisons. However, DNA–DNA homology values can be inflated by shared plasmids and other forms of horizontal genetic exchange.

The possibility was considered, and the serological identities hinted, that the vent prosthecate strains (VP1–VP6 \(^T\)) could form a sub-group within *Hyphomonas* since each was isolated from the deep sea, each was barophilic and each came from dynamic niches with respect to temperature and ion concentration. Indeed, the VP strains, especially VP1–VP4, were phenotypically more ‘plastic’ (i.e. able to flourish in a wide variety of environmental conditions). However, genotypically, *Hyphomonas jannaschiana*, *Hyphomonas hirschiina* and *Hyphomonas rosenbergii* sp. nov. grouped as strongly, or more strongly, with species isolated from non-vent ocean niches as with one another. For example, *Hyphomonas adhaerens* sp. nov. MHS-3 \(^T\) and *Hyphomonas jannaschiana* VP1 had a higher 16S rDNA similarity matrix with one another than with *Hyphomonas hirschiina* VP5 \(^T\) or *Hyphomonas rosenbergii* sp. nov. VP6 \(^T\). Thus, it appears that *Hyphomonas* is a group of pelagic ‘wanderers’, able to colonize (and possibly adapt to) different solid, submerged substrata, including those near hydrothermal vents.

Amended description of genus *Hyphomonas*

Hyphomonas species are of marine origin, share a biphasic life cycle and normally generate only a single polar prosthecum. They catabolize amino acids for energy and growth (with the exception of strain MHS-2 \(^T\), which can utilize sugars). They are isolated from many ocean niches, including the open ocean (the pelagic zone), mud sloughs and two different hydrothermal vent sites (surface waters and depths of 2600 m). Members of the genus *Hyphomonas*, like other budding, prosthecate bacteria, undergo a rather complex life cycle termed a ‘biphasic life cycle’. It requires 265 min for *Hyphomonas neptunium* to complete a full cycle at 36 °C. The life cycle consists of...
a swarm-cell stage that eventually metamorphoses into a benthic, reproductive cell during the biphasic developmental cycle. Members of *Hyphomonas*, especially the vent strains, grow in a broad range of environmental conditions, including those involving considerable temperature, pressure and salinity variations. They are primary colonizers of submersed marine surfaces, some species producing dense biofilms.

Briefly, the morphological characteristics of *Hyphomonas* cells are as follows: rod-shaped to oval mature cells measuring 0.5–1.0 × 1.0–3.0 μm; buds are produced at the tips of polar prosthecæ, which measure 0.2–0.3 μm in diameter and are 1–5 times the length of the cell body; and swarm cells are motile by means of a single polar to lateral flagellum located on developing buds of younger daughter cells.

Gram-negative, non-acid-fast, aerobic, non-spore-forming and chemo-organotrophic. All strains investigated so far are catalase-positive, oxidase-positive, urease-negative, indole-negative, hydrogen sulfide-negative, non-saccharolytic and non-pathogenic for mammals. Peptone is normally required for growth. With one exception, all strains denitrify. The optimum growth temperature range is 22–37 °C at 101 kPa. *Hyphomonas neptunium, Hyphomonas polymorpha, Hyphomonas oceanitis* and *Hyphomonas hirschianna* have a Q-11 ubiquinone type along with a significant content of the total fatty acids. The major fatty acid is octadecenoic acid (18:1), constituting 64% of the total fatty acids. The type strain is MHS-2T (= ATCC 43964T).

Description of Hyphomonas johnsonii sp. nov.

The main body of the mother cell is prolate spheroid, approximately 1 μm in diameter and has one prosthecæ 0.2 μm wide × 1 μm long. Buds are motile by a single flagellum. Gram-negative. Not acid-fast. No endospores. Aerobic. Colonies are round, convex and approximately 1.5–5 μm in diameter after 3 d at 30 °C on marine agar. In liquid medium, growth is granular and/or ropey. A thin film may form on the growth vessel. Can utilize sugars, in the presence of amino acids for carbon and energy. The optimum temperature range is 25–37 °C. The ocean salts growth range is 1.5–6.0%. The pH growth range is 5.7–8.0. Nitrate is reduced. Sheep erythrocytes are z–haemolysed. Susceptible to novobiocin, penicillin, ampicillin, streptomycin, tellurite, crystal violet and brilliant green but resistant to 1.0% Tween 80, methylene blue and neutral red. The major fatty acid is octadecanoic acid (18:1), constituting 64% of the total fatty acids. The G+C content of the DNA is 64 mol%. The type strain is MHS-2T (= ATCC 43964T).

Description of Hyphomonas rosenbergii sp. nov.

Hyphomonas rosenbergii (ro.sen.ber‘gi.i. M.L. gen. n. rosenbergii of Rosenberg, named after the Israeli microbial ecologist Eugene Rosenberg).

The main body of the mother cell is prolate spheroid, approximately 1 μm in diameter and has one prosthecæ 0.2 μm wide × 1 μm long. Buds are motile by a single flagellum. Synthesizes a capsule that surrounds the entire cell at all growth stages and a polar holdfast that is temporally synthesized. Gram-negative. Not acid-fast. No endospores. Aerobic. Colonies are round, undulate and about 1.5 mm in diameter after 3 d at 30 °C on marine agar. In liquid medium, there is granular turbidity due to adhering cell masses. A thick biofilm forms on the surface of the growth vessel. Do not form rosettes. The optimum temperature range is 25–37 °C. The ocean salts growth range is 1.5–12%. The optimum pH growth range is 5.7–8.7. Nitrate is reduced. Sheep erythrocytes are not haemolysed. Susceptible to novobiocin, streptomycin, tellurite, crystal violet, brilliant green and methylene blue but resistant to 1.0% Tween 80, penicillin and ampicillin. The major fatty acid is octadecanoic acid (18:1), constituting 80% of the total fatty acids. The G+C content of the DNA is 60 mol%. The type strain is MHS-3T (= ATCC 43965T).

Description of Hyphomonas adhaerens sp. nov.

Hyphomonas adhaerens (ad.hae‘rens. L. part. adj. adhaerens hanging on/sticking to).

The major fatty acid is octadecanoic acid (18:1), constituting 80% of the total fatty acids. The G+C content of the DNA is 60 mol%. The type strain is MHS-3T (= ATCC 43965T).

Description of Hyphomonas johnsonii sp. nov.

The main body of the mother cell is prolate spheroid, approximately 1 μm in diameter and has one prosthecæ 0.2 μm wide × 1 μm long. Buds are motile by a single flagellum. Gram-negative. Not acid-fast. No endospores. Aerobic. Colonies are round, convex and approximately 1.5 μm in diameter after 3 d at 30 °C on marine agar. In liquid medium, growth is granular and/or ropey. A thin film may form on the growth vessel. Can utilize sugars, in the presence of amino acids for carbon and energy. The optimum temperature range is 25–37 °C. The ocean salts growth range is 1.5–6.0%. The pH growth range is 5.7–8.0. Nitrate is reduced. Sheep erythrocytes are z–haemolysed. Susceptible to novobiocin, penicillin, ampicillin, streptomycin, tellurite, crystal violet and brilliant green but resistant to 1.0% Tween 80, methylene blue and neutral red. The major fatty acid is octadecanoic acid (18:1), constituting 64% of the total fatty acids. The G+C content of the DNA is 64 mol%. The type strain is MHS-2T (= ATCC 43964T).

Description of Hyphomonas rosenbergii sp. nov.

Hyphomonas rosenbergii (ro.sen.ber‘gi.i. M.L. gen. n. rosenbergii of Rosenberg, named after the Israeli microbial ecologist Eugene Rosenberg).

The main body of the mother cell is prolate spheroid, approximately 1 μm in diameter and has one prosthecæ 0.2 μm wide × 1 μm long. Buds are motile by a single flagellum. Synthesizes a capsule that surrounds the entire cell at all growth stages and a polar holdfast that is temporally synthesized. Gram-negative. Not acid-fast. No endospores. Aerobic. Colonies are round, undulate and about 1.5 mm in diameter after 3 d at 30 °C on marine agar. In liquid medium, growth is granular and/or ropey. A biofilm forms on the walls of the growth vessel. Cells form rosettes. The optimum temperature range is 25–45 °C. The ocean salts growth range is 1.0–2.0%. The pH growth range is 5.7–8.9. Nitrate is reduced. Sheep erythrocytes are not haemolysed. Susceptible to novobiocin, penicillin, ampicillin, streptomycin, tellurite, crystal violet, brilliant green and methylene blue but resistant to 1.0% Tween 80 and neutral red. The major fatty acid is octadecanoic acid (18:1), constituting 43% of the total fatty acids. The outer-membrane-protein profiles, DNA homology and serology have low but significant identity with other strains of *Hyphomonas*. The G+C content of the DNA is 64 mol%. The type strain is MHS-2T (= ATCC 43964T)
low but significant identity with other strains of *Hyphomonas*. The G+C content of the DNA is 61 mol%. The type strain is VP6^T (= ATCC 43869^T).

ACKNOWLEDGEMENTS

We thank F. Singleton for the fatty acid analysis, R. Gherna for the G+C determinations, and H. G. Trüper for providing the etymologies. G. Lacy and J. Johnson generously contributed their time, expertise and laboratories for the DNA–DNA hybridizations. K. Guthrie and K. Busch provided valuable technical assistance. We thank S. M. Hinton and the Exxon Research & Engineering Corporation for their contributions to the 16S rDNA analysis. H. Jannasch and J. Smit graciously provided *Hyphomonas* strains. This manuscript was prepared courtesy of a University MD Graduate School Semester Research Award (to R.W.) and a portion of this work was supported by a grant from JIFSAN.

REFERENCES

Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package), version 3.5, Department of Genetics, University of Washington, Seattle, WA, USA.

International Journal of Systematic and Evolutionary Microbiology

468

Downloaded from www.microbiologyresearch.org by

IP: 54.70.40.11

On: Sun, 02 Dec 2018 20:30:04

