Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment

Thomas J. Lyimo,1,2 Arjan Pol,1 Huub J. M. Op den Camp,1 Harry R. Harhangi1 and Godfried D. Vogels1

Author for correspondence: Huub J. M. Op den Camp. Tel: +31 24 652657. Fax: +31 24 3652830. e-mail: huubcamp@sci.kun.nl

1 Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
2 Microbiology Unit, Department of Botany, Faculty of Science, University of Dar es Salaam, PO Box 35060, Dar es Salaam, Tanzania

Methanosarcina semesiae MD1T (T = type strain), a novel obligately methylotrophic methanogenic archaeon is described. Strain MD1T was isolated from an enrichment on dimethylsulfide inoculated with mangrove sediment. The cells were irregularly cocccoid, non-motile, 1–2 µm in diameter and stained Gram-positive. The catabolic substrates used included dimethylsulfide, methanethiol, methanol and methylated amines, but not acetate, formate, H2/CO2 or a combination of these substrates. When cells grown on dimethylsulfide were transferred to trimethylamine or methanol and vice versa, a lag phase was observed. The same lag phase occurred when cells grown on trimethylamine were transferred to methanol and vice versa, indicating that for each substrate different enzymes were induced. Fastest growth occurred within a temperature range of 30–35 °C and a pH of 6.5–7.5. Both Na+ and Mg2+ were required for growth, with maximum growth rates at 200–600 mM Na+ and 20–100 mM Mg2+. The cells exhibited specific growth rates (h−1) of 0.07–0.02, 0.15±0.04 and 0.18±0.05 on dimethylsulfide, methanol and trimethylamine, respectively. Analysis of the 16S rRNA gene sequence showed that strain MD1T was phylogenetically closely related to members of the genus Methanosarcina, but clearly differed from all described species of this genus (94–97% sequence similarity).

Keywords: Methanosarcina semesiae sp. nov., archaea, methanogen, mangrove, dimethylsulfide

INTRODUCTION

Mangroves are characteristic of tropical coasts and are counterparts of tidal salt marshes of the temperate regions. An important characteristic of this ecosystem is that the sediment is anaerobic and highly reduced. Sulfate reduction and methanogenesis are the predominant terminal processes in the anaerobic degradation of organic matter in such environments. In marine sediment, where sulfate is readily available, sulfate reduction predominates (Crill & Martens, 1986; Holmer & Kristensen, 1994). However, methanogenesis co-exists in these environments, presumably by utilization of non-competitive substrates. Indeed, many methanogens isolated from marine sediments are obligately methylotrophic (Franklin et al., 1988; Kadam et al., 1994; Mohanraju et al., 1997; Ni et al., 1994; Oremland & Boone, 1994). The inability of these obligate methylotrophic methanogens to use hydrogen or acetate shows that they occupy niches in which there is no competition for methylated substrates like dimethylsulfide (DMS), methanethiol (MT), trimethylamine (TMA) and methanol (Oremland & Polcin, 1986; Oremland et al., 1982).

Volatile methylated sulfur compounds have been intensively studied since they play an important role in the global sulfur cycle. DMS and carbonylsulfide (COS) constitute climatically relevant trace gases in

Abbreviations: COS, carbonylsulfide; DMA, dimethylamine; DMS, dimethylsulfide; MMA, monomethylamine; MT, methanethiol; TMA, trimethylamine.

The GenBank/EMBL accession number for the sequence of the 16S rRNA gene of strain MD1T is AJ012742.
the atmosphere (Andreae & Raemdonck, 1983; Charlson et al., 1987). DMS has been estimated to account for half of the biogenic input of volatile sulfur into the atmosphere with nearly 75% of it being generated in marine regions (Andreae & Raemdonck, 1983). The main precursor for DMS is dimethylsulfoniopropionate, an osmolyte of marine algae, phytolankton, reef corals and some plants (Dacey & Wakeham, 1986; Hill et al., 1995; Iverson et al., 1989; Paquet et al., 1995). Other precursors for DMS include methionine (Kiene & Visscher, 1987) and methoxylated aromatic compounds, the latter in combination with inorganic sulfide (Bak et al., 1992; Kreft & Schink, 1993).

Degradation of DMS and MT in anaerobic marine sediments has been ascribed to both sulfate-reducing bacteria and methanogenic archaea (Kiene & Capone, 1988; Kiene & Visscher, 1987). Some obligately methylotrophic methanogens able to use DMS for growth and methanogenesis have been described: Methanohalophilus zhilinae (Mathrani et al., 1994); Methanohalophilus oregonensis (Bak et al., 1992), from this sediment. Methanohalophilus zhilinae (Mathrani et al., 1994); Methanohalophilus oregonensis (Bak et al., 1992), from this sediment. Methanohalophilus zhilinae (Mathrani et al., 1994); Methanohalophilus oregonensis (Bak et al., 1992), from this sediment. Methanohalophilus zhilinae (Mathrani et al., 1994); Methanohalophilus oregonensis (Bak et al., 1992), from this sediment. Only recently, Mohanraju et al. (1997) isolated a methanogenic archaeon (Methanococcoides methylutens) which grew on TMA and methanol. DMS utilization was not tested and no phylogenetic analysis was made. In a previous study, we have shown that addition of DMS stimulated methanogenesis in a Tanzanian mangrove sediment (T. J. Lyimo and others, unpublished). The present paper reports the isolation and characterization of a novel DMS-consuming obligately methylotrophic methanogenic archaeon, Methanosarcina sensensis sp. nov. strain MD1(T) (T = strain), from this sediment.

METHODS

Source of inoculum. Sediment samples were taken from the Mtoni creek mangrove forest, Dar es Salaam, Tanzania (bordering the Indian Ocean) located at approximately 6°45' latitude and 39°41' longitude. Annual rainfall in the region is about 1050 mm. The major part of the area is muddy. Oceanic water covers the sediment surface from 0 to about 4 m depending on tidal variations and location (Lyimo et al., 1997). Samples were taken by pressing a sampler (plastic cylinder, 5-5 cm i.d., 45 cm long) into the sediment. The sampler was tightly closed at both sides with airtight PVC plungers (3 cm high) and air was expelled through small openings in the plungers. The sampler was transported to the laboratory and opened in an anaerobic chamber.

Media and culture techniques. The sediment samples were diluted 2-3 times with anaerobic synthetic seawater (NaCl, 460 mM; MgSO4, 40 mM; CaCl2, 2H2O, 10 mM; and KCl, 10 mM). The resulting slurries were dispensed into serum bottles and the headspace was gassed with N2/CO2. Ratios used for gassing of samples with N2/CO2 or H2/CO2 were 80%/20% (v/v) at 0.5 atm overpressure. After several additions of low concentrations (0.5 mM) of DMS, the enriched slurry was transferred to the modified mineral medium of Widdel & Bak (1992). The medium contained the following compounds: NaCl, 340 mM; NH4Cl, 47 mM; KH2PO4, 1.5 mM; NaHCO3, 30 mM; KCl, 6.7 mM; MgCl2, 6H2O, 15 mM; CaCl2, 2H2O, 1 mM; Na2S, 2 mM; Na2S·O2H, 0.2 mM; 1 ml trace element solution 1T; and 10 ml vitamin solution 1T. Trace element solution was made up of (1L): nitritroacetate, 15 g; FeSO4·7H2O, 1 g; H3BO3, 0.3 g; H2SeO3, 0.12 g; Al(SO4)3, 12H2O, 0.32 g; CuSO4·5H2O, 0.32 g; CoCl2·6H2O, 0.32 g; Na2MoO4·2H2O, 0.032 g; NiCl2·6H2O, 0.31 g; ZnSO4·7H2O, 0.32 g; and MnCl2·4H2O, 0.32 g. Vitamin solution was made up of (1L): p-aminobenzoic acid, 0.1 g; riboflavin, 0.1 g; thiamin, 0.002 g; nicotinic acid, 0.2 g; pyridoxine, 0.5 g; pantothenic acid, 0.1 g; cobalamin, 0.1 g; biotin, 0.02 g; folic acid, 0.05 g; and lipoic acid, 0.05 g.

For substrate utilization experiments, anaerobic sterile stock solutions were added to the medium prior to inoculation. The substrates tested were: sodium acetate, 10 mM; DMS, 10 mM; MT, 5 mM; sodium formate, 20 mM; methanol, 20 mM; TMA, 20 mM; HCl, 10 mM, dimethylamine (DMA)/HCl, 10 mM; and monomethylamine (MMA)/HCl, 20 mM. Different pH values were obtained by adjusting the concentration of NaHCO3 (for pH range 5.5-7.0) and Na2CO3 (for pH range 7-9) or by use of HEPES (25 mM). The pH changes (increase or decrease depending on substrate) during growth were 0.3 pH units or less. Media with different Na+ values were obtained by adjusting NaCl concentration only (i.e. NaHCO3, Ca2+ and Mg2+ were kept constant). Media with various concentrations of Mg2+ and Ca2+ were prepared by adding sterile anoxic stock solutions to the prepared medium. When tested for Mg2+, Ca2+ was omitted and vice versa. The toxicity levels of DMS were tested by adding different concentrations (1-50 mM) of filter-sterilized DMS into sterile medium.

Enrichment and isolation. The DMS-utilizing methanogen was enriched by addition of low concentrations of DMS as the only catabolic substrate. However, after several transfers on DMS only, a combination of methanol (5 mM) and DMS (final concentration of 10 mM) was used. In this way, faster growth was obtained and the proportion of non-methanogenic contaminants decreased. Methanol was used because preliminary tests showed that DMS and methanol were used simultaneously. The enriched culture was serially diluted and inoculated into medium supplemented with 15 g purified agar 1L and 5 mM DMS or a combination of 5 mM methanol and 5 mM DMS. From the agar tubes containing a few colonies, some colonies were picked with a hypodermic needle (1 mm x 40 mm) and purified by repeated dilution series in liquid medium supplemented with the same substrates. The purity of isolates was checked by addition of glucose (1%, w/v), yeast extract (0.2%, w/v) and tryptic soy broth (0.2%, w/v) which would result in growth of non-methanogenic contaminants. In addition, cultures were routinely examined with a phase-contrast microscope (Leitz Wetzlar).

Growth experiments. Optimum conditions for growth were determined by measuring specific growth rates under various conditions. Growth was quantified by measuring methane formation (growth rates calculated from optical density and methane formation during preliminary experiments were similar). The specific growth rates (µ) during exponential growth were calculated (linear regression) from plots in which the logarithm of total methane accumulated was calculated.

International Journal of Systematic and Evolutionary Microbiology

50

Downloaded from www.microbiologyresearch.org by IP: 54.70.40.11
plotted against time and expressed as h⁻¹ (Powell, 1983). When the effects of environmental parameters (pH, temperature, salt concentration) were tested, growth rates were determined from cultures adapted to those conditions. Cultures were transferred at least twice under the conditions tested before growth rates were measured.

When tested for utilization of acetate, formate and H₂/CO₂ (substrates which did not support growth), inocula were pre-grown on different substrates (DMS, methanol and TMA). Cells were transferred at the exponential phase and incubated at 30 °C for a month. Combinations of substrates were also tested (Muller et al., 1986; Boone & Whitman, 1988). All incubations were performed at 30 °C and pH 7 unless otherwise stated. Growth on methylotrophic substrates was stimulated by yeast extract, but cultures were routinely grown in medium without yeast extract.

Analytical techniques. Methane formation was determined by GC using a Porapak Q (80/100 mesh) column and flame ionization detection. In experiments with added methylated sulfur compounds, DMS, MT and H₂S were measured on a GC equipped with a flame photometric detector as described previously (Lomans et al., 1997).

16S rRNA gene analysis. For DNA extraction, cultures (3–6 ml) were centrifuged (2 min at 16000 g), and the cells were lysed by resuspending the pellets in 550 µl extraction buffer (Tris/HCl, 10 mM; EDTA, 0.1 mM; and SDS, 0.5%). Proteinase K (100 µg ml⁻¹) was added, and the tubes were incubated at 65 °C for 2–3 h. Then, 900 µl phenol:chloroform:isoamyl alcohol (25:24:1) was added. After gentle mixing for 10 min the mixture was centrifuged (16000 g) for 10 min. The top aqueous phase was transferred to a new sterile tube and extracted with chloroform:isoamyl alcohol (24:1). Then, 50 µl sodium acetate (3 M) and 1000 µl ethanol (96%) were added. The DNA was precipitated overnight at −20 °C and collected by centrifugation (10 min at 16000 g). The pellet was washed with 250 µl ethanol (70%). After centrifugation, the pellets were air-dried for about 20 min, dissolved in 50 µl sterile demineralized water and stored at −20 °C until use.

The gene encoding the 16S rRNA was amplified by PCR from the archaea-specific primers REV007 (5'-GTTGATCTCGCCAGGGYYA-3') and 23S047' (5'-CCCBGGGCT-TATCGAGCTT-3') (Raskin et al., 1994). Reaction mixtures contained the following components in a final volume of 50 µl in a 200 µl PCR reaction tube: 5 µl 25 mM MgCl₂; 5 µl PCR buffer 10 ×; 2 µl 5 mM dNTP; 1 µl Taq polymerase (0.5 units µl⁻¹); 31 µl sterile H₂O; 2 µl REV007 (20 pmol µl⁻¹); 2 µl 23S047 (20 pmol µl⁻¹) and 2 µl DNA template. The PCR was controlled with a thermocycler (Perkin Elmer) programmed as follows: denaturation at 94 °C for 4 min, followed by 30 cycles consisting of denaturing at 94 °C for 1 min, annealing at 55 °C for 1 min and extension at 72 °C for 2 min; the last cycle was followed by an additional extension at 72 °C for 10 min and cooling to 4 °C. Amplified DNA fragments were separated by agarose gel electrophoresis (1% agarose) and stained with ethidium bromide. The PCR fragment product was directly ligated into the pGEM-T easy vector according to the manufacturer’s procedure (Promega). E. coli XL-1 Blue competent cells were used for transformation. Plasmid DNA of clones with an insert was isolated and purified using the FlexiPrep kit (Pharmacia). Sequencing of the 16S rRNA gene was performed on a Perkin Elmer automated laser fluorescent DNA sequencer (ABI 310) with the following primers: ARC1326 (5'-TGTGTGCAAGGAGCAGG-AC-3'); FOR1241 (5'-ACACGCGGCTACAATG-3'); M13 REV and M13 FORW (pGEM-T easy vector primers); ARC195; MC1109; and REV344 and REV915 (Raskin et al., 1994) (REV344 and REV915 being the reverse of the sequences published).

Phylogenetic analysis. The 16S rDNA sequence of strain MD1T was compared to sequences in the GenBank and EMBL databases using the BLAST algorithm (Dutch CAOS/CAMM Center Facility, Nijmegen, The Netherlands). A selection of genera yielding the highest similarity was made and used to make an alignment with GCGPpackage (GCG package; Devereux et al., 1984). The alignment was checked manually and ambiguous positions were removed. Phylogenetic analysis was performed using the PHYLIP 3.5c package (Felsenstein, 1989). Bootstrap analysis was based on 100 resamplings of the dataset using the SEQBOOT program. The 16S rRNA gene sequences of the archaea used in the tree have the following GenBank/EMBL accession numbers: Methanoseta thermaacetophila CALS-1 (M59141), Methanoseta concilii FE-1NRA (M59146), Methanoseta concilii Oplikon (X16932), Methanohalophilus oregonensis WALT (U20152), Methanohalobus taylorii GS-16T (U20154), Methanohalobus vulcani PL-12M® (U20155), Methanobrevibacter B-1® (U20148), Methanobrevibacter tindarius Tindari3T (M59135), Methanococcoloides methylutens TMA-10T (M59127), Methanosarcococcoides burtonii DSM 6242T (X65537), Methanohalophilus sp. SF1 (M51932), Methanohalophilus mahiti SLP® (M59133), Methanohalobium estivatum Z-7303T (U20149), Methanosarcina maezi SarP1 (AF028691), Methanosarcina maezi S-6T (U20151), Methanosarcina frisia C16T (M59138), Methanosarcina thermophila TM-1T (M59140), Methanosarcina barkeri Sar (AF028692), Methanosarcina barkeri 227 (M59144), Methanosarcina acetivorans C2A® (M59137), Methanosarcina siliculae T4M® (U20153), Methanosarcina sp. WH1 (M59136) and Methanospirillum hungatei JF1 (M60880).

RESULTS AND DISCUSSION

Isolation

Previously, it was clearly demonstrated that methanogens are involved in the degradation of DMS in mangrove sediments. The most probable numbers of methanogens from these sediments were also high, up to 10⁷ cells (g fresh sediment)⁻¹ (Lyimo et al., 1998). To obtain pure cultures of DMS-utilizing methanogens, micro-organisms were enriched by sequential additions of low amounts of DMS to mangrove sediment. The enrichment was serially diluted and inoculated in agar medium with DMS or DMS + methanol. A DMS utilizing strain MD1T, was isolated from an agar tube with DMS as the only catabolic substrate. From the tubes with DMS + methanol, a second methanogenic strain was isolated, designated strain MM1. However, this strain was unable to utilize DMS. The 16S rDNA sequence from cells of strain MM1 was compared to that from strain MD1T. Although they look morphologically identical, they were quite different phylogenetically. Strain MM1 was more closely related to Methanococcoloides species whereas strain MD1T was related to Methanosarcina species (see below). Strain MM1 has yet to be physiologically characterized.
Morphology

Cells of strain MD1T were single, non-motile and irregularly coccoid, with a diameter of 0.8–2.1 \textmu m with a mean of 1.4±0.2 \textmu m (n = 50; determined from phase-contrast microphotographs). Aggregates were not found. Since the presence of flagella was not determined, the possibility of motility cannot be excluded. From microscopic observations, it was concluded that cells stained Gram-positive and lysed on addition of water or SDS (final concentration 2%, w/v) indicating that a proteinaceous cell wall was present (Boone \textit{et al.}, 1993).

Catabolic substrates

Strain MD1T was able to metabolize DMS, MT, methanol and methylated amines (MMA, DMA and TMA) since these substrates resulted in methane production and an increase in optical density of the cultures. Acetate, formate or H\textsubscript{2}/CO\textsubscript{2} did not result in growth or in methane production. Cells also did not utilize a combination of acetate and hydrogen, not even in the presence of methanol. The isolated archaean was tested for toxic levels of DMS. No growth or methane production was observed at DMS concentrations of 30 mM or higher. In most cases, cells grew linearly when DMS concentrations above 20 mM were used. During growth on DMS, the isolate produced significant amounts of MT (maximum 1.5 mM) as an intermediate; on MT, the isolate released small amount of DMS. This corresponds with published data on other DMS-utilizing methanogens (Finster \textit{et al.}, 1992; Ni & Boone, 1991).

When cells adapted to DMS were transferred to methanol and TMA a lag phase of about 5 h and 15 h, respectively, was observed (Fig. 1a). When cells adapted to methanol were transferred to methylated amines (MMA, DMA or TMA), the lag phase was about 2 h.
Fig. 2. Temperature optimum (a) and pH optimum (b) for growth of strain MD1T. The specific growth rate (μ), determined from the methane production rate during the exponential growth phase, is plotted against the incubation temperature (a) and pH (b). Growth was tested with different substrates: DMS (○), methanol (□) and TMA (▲). Values are expressed in h^{-1} and are the means of two independent cultures.

(Fig. 1b). Cells grown on TMA had a much longer lag phase (~50 h) before growth on methanol started whereas no lag phase was observed when the cells were transferred to DMA or MMA (Fig. 1c). TMA- and methanol-grown cells began to produce methane after a lag phase of 3–5 d when transferred to DMS (Fig. 1d). The ability to catabolize DMS was highly dependent on the growth phase of the methanol or TMA culture. The best results were obtained when cultures were transferred in the exponential phase. Cultures transferred at the late exponential or stationary phase were unable to utilize DMS even after incubation for 4 weeks. These results are in contrast with those showed by Ni & Boone (1991) for Methanosarcina siciliae H1350. In this micro-organism, the enzymes for the utilization of methanol and TMA were constitutively expressed. Our results with strain MD1T clearly demonstrate that the enzymes involved in DMS, methanol and TMA degradation are different and have to be induced.

Fig. 3. NaCl range and magnesium requirement for growth of strain MD1T. The specific growth rate (μ), determined from the methane production rate during the exponential growth phase, is plotted against the NaCl concentration (a) and the initial Mg2+ concentration (b) in the medium. Values are expressed in h^{-1} and are the means of two independent cultures.

The methanogenic conversion of methanol and methylated amines proceeds by similar mechanisms (Wassenar \textit{et al.}, 1996). Little information is available concerning biochemical pathways for methanogenesis from methylated thiols. Ni & Boone (1993) published some initial experiments with cell-free extracts from Methanosarcina siciliae. Enzymes involved in the metabolism of DMS have not been identified from typical DMS-utilizing methanogens. Recently, Tallant & Krzycki (1997) identified a 480 kDa coenzyme M-methylase from Methanosarcina barkeri MS, grown on acetate, as the only enzyme detectable which is capable of carrying out coenzyme M methylation from methylated thiols. However, they were unable to establish cultures of Methanosarcina barkeri MS with DMS as the sole substrate. Strain MD1T is interesting for biochemical studies since it is relatively simple to handle and it has a reasonable growth rate on DMS (maximum growth rate 0.095 h^{-1}). Thus, we hope to use this organism for biochemical studies in the near future.
Optimum growth conditions

Fig. 2 shows the influence of temperature and pH on growth and methanogenesis. Optimum growth took place within the temperature range 30–35 °C and at pH values between 6·5 and 7·5. Cells were able to grow and produce methane at temperatures of 18–39 °C (lower temperatures were not tested) and a pH range of 6·2–8·3 on methanol or TMA. On DMS, growth occurred within the same range of temperatures but no growth was found when the pH was above 8. The mean specific growth rates (μ) under optimum conditions were 0·07 ± 0·02, 0·15 ± 0·04 and 0·18 ± 0·05 h⁻¹ (n = 30 for all values) on DMS, methanol and TMA, respectively.

Fastest growth occurred when the NaCl concentration was about 200–600 mM (Fig. 3a). Methane formation from cells inoculated into a medium without addition of NaCl (only NaHCO₃ present) was linear and no growth was observed. The optimal Mg²⁺ concentration was 20–100 mM (Fig. 3b). Mg²⁺ could be replaced by 5–10 mM of Ca²⁺ (Ca²⁺ concentrations > 10 mM resulted in a precipitate). Methane formation from a culture without Mg²⁺ or Ca²⁺ was linear and cells lysed after 2 d incubation at 35 °C. Inocula for controls came from cultures grown with 1 mM Ca²⁺ and 15 mM Mg²⁺. These results indicate that both Na⁺ and either Mg²⁺ or Ca²⁺ were required for growth.

16S rRNA sequence characterization

The 16S rDNA sequence data were obtained for positions 27–1478 (Methanosarcina barkeri numbering) of the 16S rRNA gene. When compared to other sequences the 16S rRNA gene of strain MD1T was found to be most similar to the sequences of Methanosarcina strains (94·7–96·0%). Highest similarity was observed with Methanosarcina siciliae. A phylogenetic tree based on a distance matrix (EFITCH) calculated from 1288 unambiguously aligned positions of strain MD1T and 23 other methanogens is shown in Fig. 4. The topology of the tree was also checked with alternative methods (parsimony and bootstrap parsimony analysis). Strain MD1T clusters within the family Methanosarcinaceae and appears to be most closely related to the genus Methanosarcina, although the position of strain MD1T is always outside of the cluster of known representatives of this genus. Clustering is supported by high bootstrap values. Rouviere et al. (1992) defined a fully conserved signature sequence
for the ‘methanosarcina group’ of the order Methanosarcinales, present in a helical region, at positions 234–242 and 248–256 (Methanosarcina barkeri numbering). Remarkably, in strain MD1T two bases in this region were different: C instead of T at position 237 and G instead of A at position 253.

Taxonomy

The physiological and morphological characteristics together with the phylogenetic analysis of the 16S rRNA gene sequence of strain MD1T suggested that this organism is a member of the genus Methanosarcina. Like Methanosarcina species, strain MD1T utilized DMS, methanol and methylated amines. On the basis of substrate utilization, strain MD1T was most similar to Methanosarcina siciliae. However, morphologically these two strains differed; Methanosarcina siciliae forms massive aggregates with pseudosarcinae (Ni & Boone, 1993; Ni et al., 1994) whereas strain MD1T occurs as single irregular cocoid cells. Furthermore, a strain of Methanosarcina siciliae (C2J) was reported to utilize acetate (Elberson & Sowers, 1997) whereas strain MD1T was an obligate methylotroph. Since our isolate was obtained from an enrichment with DMS as substrate, it is possible that we selected for an obligate methylotroph that has a mutation in the aceticlastic pathway. It cannot be excluded that enrichment on acetate would yield strains of this species which are not obligately methylotrophic. The observation that strain MD1T occurred as single cells resembled the situation seen in some strains of Methanosarcina frisia and Methanosarcina mazei but these species are not restricted to methylotrophy (Blotevogel & Fischer, 1989; Maestrojüan et al., 1992). The 16S rRNA gene sequence of strain MD1T differed by 40–53% from all described species of the genus Methanosarcina. Phylogenetic analysis of the family Methanosarciaceae based on 16S rRNA and mcr1 gene sequences revealed intergeneric distance values of 97±0.65% and distance values of 92±1% between different genera of this family (Springer et al., 1995). In view of the above mentioned arguments, and supported by the deep phylogenetic division of this strain from other strains of Methanosarcina, it is proposed to include strain MD1T in the genus Methanosarcina as a new species, Methanosarcina semesiae sp. nov.

Description of Methanosarcina semesiae sp. nov.

Methanosarcina semesiae (sem.es.i.ae. M.L. gen. n. semesiae of semesi, named after Adelaida K. Semesi in recognition of her many contributions to marine biology studies and for her mentorship/supervision of many postgraduate students in the field of microbiology).

Cells are cocoid bodies 1.4±0.2 μm in diameter occurring as individual cells. Susceptible to hypoosmotic lysis. Cells stain Gram-positive. Obligate methylotroph. DMS, MT, methanol, MMA, DMA and TMA used for growth and methanogenesis. Acetate, formate and H₂/CO₂ are not utilized. The aforementioned substrate utilization, however, is based on only one strain. Cells grow optimally at 30–35 °C, pH 6.5–7.5 and in the presence of 0.2–0.6 M NaCl and 10–100 mM Mg²⁺ or 5–10 mM Ca²⁺. Habitat is marine sediments. The type strain is MD1T, which was isolated from Indian Ocean sediments obtained from the mangrove forest at Mtoni creek, Dar es Salaam, Tanzania. Methanosarcina semesiae strain MD1T is deposited in the DSM culture collection (DSM 12914).

ACKNOWLEDGEMENTS

The PhD grant of T. J. L. was sponsored by the Directorate General for International Cooperation (DGIS), Ministry of Foreign Affairs of the Netherlands.

REFERENCES

sarcina frisia

species, and synonymy of Int J Syst Bacteriol sp. nov., a methylotrophic methanogen from an halophilic, methylotrophic methanogen.

viron Microbiol 53 sulfoniopropionate in anoxic salt marsh sediments. methylated sulfur compounds from methionine and dimethyl-

tanzania. CIDA Physiology 178 (1988). Methanohalophilus zhilinae

maestrojua

1998). Microbial ecology of a Tanzanian mangrove sediment: ecosystems with particular reference to methane and sulfide