Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise

Georges Barbier, Anne Godfroy, Jean-Roch Meunier, Joel Quérellou, Marie-Anne Cambon, Françoise Lesongeur, Patrick A. D. Grimont and Gérard Raguénès

Author for correspondence: Georges Barbier. Tel: +33 2 98 22 45 21. Fax: +33 2 98 22 45 45. e-mail: gbarbier@ifremer.fr

A hyperthermophilic archaeon, strain AL585T, was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at latitude 13° N and a depth of 2650 m. The isolate was a strictly anaerobic coccus with a mean cell diameter of 1 μm. The optimum temperature, pH and concentration of sea salt for growth were 95 °C, 7.5 and 30 g l⁻¹. Under these conditions, the doubling time and cell yield were 0.5 h and 5 x 10⁸ cells ml⁻¹. Strain AL585T grew preferentially in media containing complex proteinaceous carbon sources, glucose and elemental sulfur. The G+C content of the DNA was 47 mol%. Sequencing of the 16S rDNA gene showed that strain AL585T belonged to the genus *Pyrococcus* and was probably a new species. This was confirmed by total DNA hybridization. Consequently, this strain is described as a new species, *Pyrococcus glycovorans sp. nov.*

Keywords: archaea, *Pyrococcus*, hyperthermophile, deep-sea, hydrothermal vent

INTRODUCTION

From the beginning of the last decade, the scientific community has been increasingly interested in hyperthermophiles, i.e. strains with temperature optima for growth above 80 °C (Brock, 1992). Such organisms are attractive objects for basic research into the molecular basis of thermophily, thermostability and the origin of life as well as for applied research (Blöchl et al., 1995). At present, the industrial applications of hyperthermophiles are related to their ability to produce thermostable enzymes (Leuscher & Antranikian, 1995). In this regard, the *Thermococcales* is the most frequently studied archaeal order and *Pyrococcus* is the most frequently studied genus within the hyperthermophiles (Leuscher & Antranikian, 1995). At present, the genus *Pyrococcus* contains only four species: *Pyrococcus furiosus* (Fiala & Stetter, 1986), *Pyrococcus woesei* (Zillig et al., 1987), *Pyrococcus abyssi* (Erauso et al., 1993) and *Pyrococcus horikoshii* (Gonzalez et al., 1998). *P. furiosus* and *P. woesei* are subjective synonyms (Erauso et al., 1993) and their 16S rDNA and DNA polymerase sequences are identical (J. Quérellou, unpublished data). Both were isolated from samples collected from marine solitarias of Vulcano island, Italy. *P. abyssi* and *P. horikoshii* were isolated from deep-sea vents of the North Fiji Basin (Erauso et al., 1993) and Okinawa Trough (Gonzalez et al., 1998), respectively. *Pyrococcus* species are coccoid marine archaea, strictly anaerobic, heterotrophic and sulfur-reducing with optimal temperatures for growth in the range 95–100 °C. Substrates for growth include complex organic substrates such as yeast extract, peptone, tryptone, meat extract and peptides (Fiala & Stetter, 1986). *P. furiosus* can also grow on starch, maltose (Fiala & Stetter, 1986; Raven & Sharp, 1997), glycogen, pullulan (Brown et al., 1990), pyruvate (Schafer & Schönheit, 1991) and cellubiose (Kengen et al., 1993). *P. woesei* can grow on glycogen, starch and gelan gum (Zillig et al., 1987; Koch et al., 1991; Rüdiger et al., 1992, 1995). *P. abyssi* and *P. horikoshii* are unable to grow on carbohydrates (Erauso et al., 1993; Gonzalez et al., 1998). This report describes a novel hyperthermophilic species of the genus *Pyrococcus* isolated from samples collected on the East Pacific Rise.
METHODS

Reference strains. P. furiosus DSM 3638T and Thermotoga maritima DSM 3109T were obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig-Stockheim, Germany. P. abyssi was provided by Gaël Eraso (Centre National de la Recherche Scientifique, Station Biologique, Roscoff, France).

Culture conditions. BHI-S medium contained (1-l): 9 g brain heart infusion (Difco), 23 g NaCl (instead of sea salt, to prevent formation of mineral precipitate), 6.05 g PIPES buffer, 10 g sulfur (Prolabo) and 1 mg resazurin. BHI-S medium (Belkin & Jannasch, 1985) contained (1-l): 2 g peptone (Difco), 0.5 g yeast extract (Difco), 30 g sea salt (Sigma, ref. S-9883), 6.05 g PIPES buffer, 10 g sulfur and 1 mg resazurin. 20AA-S medium contained (1-l): 30 g sea salt, 6.05 g PIPES buffer, 10 g sulfur, 1 mg resazurin, 10 ml of a mineral solution (Balch et al., 1979), 10 ml of a vitamin solution (Balch et al., 1979) and each of the 20 classical amino acids at a concentration of 2 mM. A stock solution of the 20 amino acids each at a concentration of 2 mM was sterilized separately by 0.22 μm filtration (Nalgene). The pH was adjusted with 5 M NaOH and 5 M HCl (measured at room temperature and atmosphere). The media were steam-sterilized at 100 °C (in order to avoid melting of sulfur and solidification in blocks at higher temperatures) for 30 min on two successive days, transferred into an anaerobic chamber (La Calhene, France) containing a gas mixture of N\textsubscript{2}, H\textsubscript{2} and CO\textsubscript{2} (90:5:5) at the optimum temperature, pH and salinity for growth, cells were maintained with aluminium heating blocks (Barnstead) and were usable for at least 1 year.

Optical microscopy and determination of cell densities. Cell number was determined with an Olympus (Japan) microscope, model BH-2, and a Thoma chamber (depth of 0.02 mm). Specific coloration using the Spot Test Flagella (Difco) was done for microscopic observation of flagella. When many non-microbial particles were observed (for instance with starch or at temperatures higher than 100 °C), cells were counted by epifluorescence microscopy (Hobbie et al., 1977). Samples were diluted in sterile water containing sea salt (30 g l-1), formalin (2.5%) and acridine orange (0.01%) and filtered on black nuclepore polycarbonate membrane filters (pore size 0.2 μm; Costar). The acridine orange counts were confirmed by staining additional cultures with the DNA-specific stain 4',6-diamidino-2-phenylindole (Porter & Feig, 1980).

For determination of the optimum pH and salinity for growth, the turbidity of cultures in 2216-S medium was also quantified with a spectrophotometer (Spectronic 301; Milton Roy). Before taking measurements, Hungate tubes were gently mixed by inversion. After 6 min, sulfur particles had settled and OD\textsubscript{600} were measured. Absorbance varied linearly with cell numbers from 2.5 x 1010 to 1.5 x 1012 cells ml-1 or OD\textsubscript{600} of 0.05-0.25. A regression through the origin gave the following formula: cells ml-1 = 4.5 x 104 x OD\textsubscript{600} (n = 7, r2 = 0.98).

For flow-cytometric analysis, cells were fixed for 15 min at room temperature with 1% paraformaldehyde (final concentration). Filtered artificial sea water (Sigma, ref. S-1649) was used to dilute samples if necessary. Nucleic acid staining was achieved by addition of SYBR Green-I (Molecular Probes) at a final dilution of 10-4 of the commercial solution and 0.1% Triton X-100. Samples were incubated for 15-30 min at room temperature in the dark. Enumeration of cells were performed with a FACSort flow cytometer (Becton Dickinson) equipped with an air-cooled laser providing 15 mW at 488 nm and with the standard filter set-up. Forward and right-angle light scatters (FSC and SSC) as well as the green fluorescence of the complex DNA-SYBR Green were collected on logarithmic signals. Samples were run at a calibrated rate of 50 μl min-1 and dilutions of the samples in filtered artificial sea water were adapted such that the event rate was below 800 cells s-1 to avoid coincidence. Data were recorded as list-mode files and processed with custom-designed software CYTOWIN (D. Vaultot, unpublished; available online at http://www.sb-roscoff.fr), which discriminates cell populations by using a combination of all the parameters recorded.

Electron microscopy. For transmission electron microscopy, cells were harvested at the end of the exponential phase of growth and centrifuged. The pellet was resuspended and fixed for 1 h at 4 °C in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2, 1100 mosmol) and then post-fixed for 1 h at 4 °C in 1% Os\textsubscript{4}O\textsubscript{4} in 0.1 M sodium cacodylate buffer (pH 7.2, 1100 mosmol). After dehydration with increasing ethanol concentrations (70, 95 and 100%, v/v), cells were embedded in EMBed 812 resin, thin-sectioned, contrasted with 7% (w/v) uranyl acetate in methanol and a 2.5% (w/v) aqueous solution of lead citrate and examined with a model 100CX transmission microscope (JEOL).

Determination of growth parameters. In order to determine the optimum temperature, pH and salinity for growth, cells were grown in Hungate tubes containing 6 ml 2216-S medium. The headspace gas was N\textsubscript{2}/H\textsubscript{2}/CO\textsubscript{2} (90:5:5) at 100 kPa below and 200 kPa above 100 °C. Temperatures were maintained with aluminium heating blocks (Barnstead) and were monitored with temperature probes placed in control tubes, pH and salinity effects on growth were studied at 95 °C. Optimum pH was determined with 2216-S medium modified as follows: pH 2.5, 3.5 and 4.5, no buffer; pH 5.5 and 6.5, MES buffer (Sigma), 1 g l-1; pH 7.5, HEPES buffer...
(Sigma), 1 g l⁻¹; and pH 8.5 and 9.5, AMPSO buffer (Sigma), 1 g l⁻¹. pH was adjusted with 5 M NaOH and 5 M HCl (measured at room temperature and pressure). Salt requirement was determined with 2216-S medium modified with different dilutions of sea salt. Three replicates were simultaneously studied at each temperature, pH or salinity.

Determination of growth requirements. Utilization of different individual carbon sources for growth was tested. Individual carbon sources were added to a defined medium that contained (l⁻¹): 30 g sea salt, 0.4 g ammonium chloride, 6.05 g PIPES buffer, 10 ml mineral solution (Balch et al., 1979), 10 ml vitamin solution (Balch et al., 1979), 10 g sulfur and 1 mg resazurin. Carbon sources were added at concentrations of 5 g l⁻¹ except for starch, chitin, cellulose and lactose, which were added at 10 g l⁻¹, and ethanol, which was added at 5 ml l⁻¹. Growth on 20AA-S was also tested. Negative controls were performed with tubes without any addition of nitrogen and carbon substrate. Such tubes, prepared with H₂/CO₂ (80:20) headspace gas mixture as sole carbon source, were used to examine the possibility of autotrophic growth. To examine growth without elemental sulfur, cells were cultured simultaneously on BHI-S and BHI (i.e. BHI-S medium without sulfur) media. For this experiment, the headspace gases on BHI medium were N₂/H₂/CO₂ (90:5:5) and H₂/CO₂ (80:20) at a pressure of 100 kPa and the reductant was titanium nitrilotriacetate (Moensch & Doty, 1962) under the conditions reported by Raguenes et al. (1997) using DNA from Escherichia coli, Clostridium perfringens and Micrococcus luteus (Sigma) as standards.

16S rRNA sequence analysis. The 16S rRNA was amplified by PCR (Saiki et al., 1988) as described previously (Dauga & Grimont, 1991), except that an archaea-specific primer was used. The primer sequences were 5'-TCCGTTGATCCT-GCCGGGAC-C3' (E. coli 16S rRNA gene, positions 2-21) and 5'-CTTCCGTTGCCCCTACT-3' (Thermococcus celer 23S rRNA, positions 257-234). The PCR product was precipitated and dissolved in 30 µl distilled water. The PCR product was cloned into pUC18 by using a SureClone ligation kit (Pharmacia) and also subcloned as HindIII-EcoRI insertions into M13mp18 and M13mp19 phage vectors. Both strands of one clone were sequenced by the dideoxy chain-termination method (Sanger et al., 1977), except that we used a HotTub DNA sequencing kit (Amersham) to resolve numerous compressions observed during sequencing of genes of hyperthermophilic microorganisms. PCR products were also sequenced directly by using a cycle sequencing kit (type CSDS; Gibco-BRL) and 35S-labelled primers (Amersham). As a control, the DNA sequence was also obtained with an automatic DNA analysis system (Applied Biosystems): this was done at Euro Sequence Gene Service (ESGS, France). A total of 1925 bp was sequenced. The determined sequence was then aligned with available reference 16S rRNA sequences. Reference sequences used were: Thermococcus hydrothermalis (Z70244), Thermococcus fumicolans (Z70250), P. furiosus (U20163), "P. abyssi" (L19921) and "P. horikoshii" (D87344). The alignment was performed with 1271 bp. A multiple sequence file was obtained by using the MEGALIGN program of the DNASTAR package (Promega), similarities and alignment were obtained by the CLUSTAL W method with weighted residues (Thompson et al., 1994) and phylogenetic reconstruction was produced using PHYLIP (Felsenstein, 1996) with the following conditions: distance, Jukes–Cantor, and successively the neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Lake, 1987) methods. Bootstrap values were determined according to Felsenstein (1985).

Quantitative DNA–DNA hybridization. DNA from the reference strains P. furiosus and "P. abyssi" was used as labelled probes in a single hybridization experiment with strain AL585T. Four to five micrograms of each reference-strain DNA was labelled by incorporation of both [³H]dATP and [³H]dGTP by using a Megaprime kit (Amersham). The nuclease S1 method for quantitative DNA–DNA hybridization was carried out as described by Popoff & Coynault (1980) by using DE81 filters (Whatman) and a β-matic IV scintillation counter (Kontron Instruments).

RESULTS

Collection of samples.

Chimney walls of active, deep-sea vents, frequently covered with alvinellid communities, were sampled from different sites on the East Pacific Rise at latitudes 11, 13 and 21° N with the deep-submergence vehicle Alvin during the American oceanographical cruise MVT'90 in 1990. These samples, chimney wall pieces and alvinellid tubes were stored in serum vials filled with sterile sea water under anaerobic conditions obtained by injection of sodium sulfide to a final
G. Barbier and others

Fig. 1. Transmission electron micrographs of strain AL585T. (a) Single cells and division by constriction (arrow). Bar, 1 μm. (b) View of the cell wall. Arrows indicate surface layer (SL), periplasmic space (PS) and cytoplasmic membrane (CM). Bar, 0·1 μm.

concentration of 0·5 g l-1. Samples were brought back to the laboratory at ambient temperature immediately after the cruise. Strain AL585T was isolated from a sample containing pieces of one smoker and its covering of alvinellid tubes collected at a site called Totem, latitude 13° N, depth 2650 m.

Enrichment and purification

Strain AL585T was obtained at 95 °C in BHI-S medium, pH 7·5. Purification of strain AL585T was performed by successive plating of culture samples onto solid BHI-S medium prepared with Gelrite. Small, translucent, colourless colonies appeared within a few days, indicating that growth was slow in such conditions compared with liquid medium. One isolated colony was transferred to liquid medium and stored.

Morphology

Observations by phase-contrast microscopy revealed that strain AL585T cells were cocci occurring singly, in pairs or in small aggregates. The cells appeared to be motile and polar flagella were observed by phase-contrast microscopy after specific coloration. Numerous diplococci were observed during the exponential growth phase, indicating that cells probably divided by constriction. Under electron microscopy, more or less spherical cocci were observed (Fig. 1a). These cells were delimited by a cytoplasmic membrane (5 nm) covered by a bilayered cell envelope with an inner periplasmic space (15 nm) and an external, densely stained layer (5 nm), probably corresponding to a surface-layer protein as already described for other thermococcales (Huber et al., 1995) (Fig. 1b). Cells divided by constriction, as visible in Fig. 1(a), but budding cells were not observed. Clumps of dense, spherical particles were frequently present inside the cytoplasm and fibres and dense particles were sometimes attached externally to the cell envelope. Electron microscopy permitted the study of the diameter distribution. The diameters of single cells ranged from 0·5 to 1·5 μm, depending on their size and the axis of measurement. The diameters measured were normally distributed and the mean diameter was 1 μm.

Growth parameters

Near atmospheric pressure, strain AL585T grew slowly at 75 and 104 °C, but growth was not observed at 107 °C. The maximum growth rate was observed at 95 °C (Fig. 2a). The highest cell yield was also obtained at this temperature, which can be considered as optimal. Growth was slow at pH 2·5 and 9·5 and the optimum pH was between 6·5 and 8·5 (Fig. 2b). The highest cell yield was obtained at pH 7·5, which can be considered as the optimum pH. Growth was observed at sea-salt concentrations ranging from 20 to 60 g l-1. Calculated growth rates were not significantly different between 30, 40 and 60 g l-1. Strain AL585T was unable to grow without sea salt or at a concentration of 80 g l-1 (Fig. 2c). The highest cell concentrations at the end of the exponential phase were obtained for 30 g l-1 sea salt, which can be considered as optimal. Under the
supposed optimal conditions (95 °C, pH 7·5, 30 g l⁻¹ sea salt), the mean doubling time from three replicates was 93 min and the highest cell concentration observed was around 5 × 10⁸ cells ml⁻¹. This doubling time was higher than the lowest previously described for other *Pyrococcus* species: 37 min for *P. furiosus* (Fiala & Stetter, 1986), 35 min for *P. woesei* (Zillig et al., 1987), 33 min for *P. abyssi* (Erauso et al., 1993) and 32 min for *P. horikoshii* (Gonzalez et al., 1998).

Considering this mean doubling time under optimal conditions, we observed that the duration of cultures made with highly diluted inocula (dilution of 10⁻⁴ v/v, for instance) until the end of the exponential growth phase was abnormally short. In order to observe the growth kinetics at relatively low concentrations directly, we determined cell numbers against time using flow cytometry. A volume of 0·1 ml of a culture containing 2 × 10⁸ cells ml⁻¹ was inoculated in 30 ml BHI-S medium and cultivated at 95 °C. This culture was sampled over 8·7 h. Flow cytometry counts are shown in Fig. 3. Three observations were made during the exponential phase of growth and the three corresponding points, from 6 × 10⁵ to 6·2 × 10⁶ cells ml⁻¹, were perfectly aligned (r² = 0·9999). From these points, a doubling time of 27 min was calculated. These results suggested that growth rates for strain AL585T calculated at microscopically or densitometrically countable concentrations (from 10⁷ to 5 × 10⁸ cells ml⁻¹) were suboptimal. This signifies that 'optimal growth' (i.e. maximum growth rate) in serum vials or Hungate tubes was only observable at relatively low cell concentrations, not easily compatible with the techniques commonly used for cell counting. When using these techniques, Thoma chamber counts or OD measurements, we observed a transition phase between the exponential growth phase and the stationary phase, during which the growth rate decreased.

Nutritional requirements

Elemental sulfur clearly stimulated growth of strain AL585T in complex medium (maximum concentrations greater than or equal to 2 × 10⁸ cells ml⁻¹) (Fig. 4). We repeatedly observed that cystine had less effect (maximum concentrations between 5 × 10⁷ and 2 × 10⁸ cells ml⁻¹) and that polysulfide failed to stimulate growth (maximum concentrations less than or equal to 5 × 10⁷ cells ml⁻¹). Elemental sulfur appeared to prolong growth, which was inhibited by metabolic products in its absence. A high concentration (80%) of H₂ in the gas phase also strongly inhibited growth. In the presence of elemental sulfur, cultures produced large amounts of hydrogen sulfide during growth (data not shown). These results suggest that addition of elemental sulfur prevents H₂ inhibition of growth, as proposed by Fiala & Stetter (1986).
Strain AL585T appeared to be an obligate heterotroph. No growth was observed in mineral medium, in the absence of a carbon source, with an H₂/CO₂ gas phase (80:20), with or without elemental sulfur (data not shown). Yeast extract plus peptone (2216-S medium) and brain heart infusion (BHI-S medium) supported rapid and efficient growth of strain AL585T (maximum concentrations greater than or equal to 2 × 10⁸ cells ml⁻¹). This strain was also able to grow equally efficiently with peptone or glucose as carbon and energy sources. Less efficient growth was observed with starch and maltose as carbon sources (maximum concentrations between 5 × 10⁷ and 2 × 10⁶ cells ml⁻¹). A small amount of growth was obtained with meat extract, yeast extract, chitin, cellobiose and a mixture of 20 amino acids (maximum concentrations between 1.5 × 10⁷ and 5 × 10⁶ cells ml⁻¹). None of the other substrates tested as carbon sources permitted growth.

Antibiotic sensitivity

Strain AL585T was resistant to rifampicin, vancomycin, penicillin, kanamycin, streptomycin and chloramphenicol at concentrations of 50, 100 and 150 µg ml⁻¹. *Thermotoga maritima* exhibited the expected pattern of antibiotic sensitivity (Huber et al., 1986) at 80 °C, demonstrating that the antibiotics were active at high temperature.

DNA composition

The G+C content of the DNA of strain AL585T was 47 ± 1 mol %. The G+C contents of *P. furiosus* and *P. abyssi*, determined under the same conditions, were 38 ± 1 and 44 ± 1 mol %. These two values are identical to the values published previously (Fiala & Stetter, 1986; Erauso et al., 1993).

16S rRNA sequence analysis

The sequence of the 16S rDNA of strain AL585T was determined and revealed that this isolate belonged to the genus *Pyrococcus*. Consequently, the sequence was aligned with other available 16S rDNA sequences for *Pyrococcus* species; sequence similarities were found to be 98 % to *P. furiosus*, *P. abyssi* and *P. horikoshii*, 96 % to *Thermococcus hydrothermalis* and 94 % to *Thermococcus fumicolans*. Fig. 5 gives the corresponding phylogenetic tree. In this tree, strain AL585T appeared closer to *P. furiosus* than to *P. abyssi* and *P. horikoshii*.

DNA–DNA hybridization

Labelled probes prepared from total DNA from *P. furiosus* and *P. abyssi*, the two *Pyrococcus* species previously described, closely related to strain AL585T, were hybridized with total DNA from strain AL585T. The levels of DNA reassociation measured were 20 and 18 %, respectively. We can observe that the values are far below 70 %, which is the percentage to consider for definition of a new species (Wayne et al., 1987). Those results confirm that strain AL585T is a new species of *Pyrococcus*.

DISCUSSION

The novel marine hyperthermophilic strain AL585T can be assigned to the archaeal domain (Woese et al., 1990) because of its resistance to antibiotics and its 16S rDNA sequence. This latter result (Fig. 5) indicates
that this strain belongs to the order Thermococcales (Zillig et al., 1987), which is so far represented by two genera, Pyrococcus (Fiala & Stetter, 1986) and Thermococcus (Zillig et al., 1983), and the strain is included in the genus Pyrococcus. The new strain has a morphology similar to the previously described species of Pyrococcus and, similar to other strains of Pyrococcus, strain AL585T has an optimal growth temperature above 90 °C, while Thermococcus species grow optimally below 90 °C (Godfroy et al., 1996, 1997; Miroshnichenko et al., 1998; Canganella et al., 1998; Duffaud et al., 1998). Characteristics of strain AL585T and other species of the genus Pyrococcus are shown in Table 1. Strain AL585T has a G+C content higher than other strains of Pyrococcus, and this criterion distinguishes the abyssal strains ('P. abyssi', 'P. horikoshii' and strain AL585T) very clearly from the coastal strains (P. furiosus and P. woesei). However, the growth responses to temperature, pH and salinity do not differentiate strain AL585T from the other species of Pyrococcus. The maximum growth rate observed for strain AL585T corresponds to a doubling time of 0.5 h, which is similar to that observed for other Pyrococcus species. However, in the case of strain AL585T, the maximum growth rate was much lower (doubling time of 1.5 h) at the end of the exponential phase of growth, in the range of cell concentrations usually studied. We can hypothesize that this transition phase could reveal the existence of a limiting factor for growth or an inhibiting effect of metabolic products when growth occurs in closed vessels. This last hypothesis will have to be tested further by studying the behaviour of strain AL585T when grown in a fermenter.

As with other Pyrococcus species, strain AL585T grows efficiently in the presence of proteinaceous substrates. Unlike 'P. abyssi' and 'P. horikoshii', strain AL585T is also able to use different carbohydrates, an ability already described for P. furiosus and P. woesei. This is in line with 16S rDNA sequence comparisons (Fig. 5), which separated Pyrococcus species in two groups corresponding with these phenotypic differences. However, strain AL585T is able to use glucose as a carbon source for its growth, a feature that appears to be unique in the genus Pyrococcus. This ability to ferment proteins, amino acids and carbohydrates in the presence of sulfur appears to correspond to the characteristics of the original ecosystem surrounding this isolate. Strain AL585T was isolated from pieces of an active smoker covered with an alvinellid colony, made mainly of Alvinella pompejana individuals. Current knowledge of the ecology of this species (Desbruyères et al., 1998) clearly indicates that all the major elements we used to prepare culture media (sea salt, sulfur, proteins and carbohydrates) are present in the immediate vicinity of this animal.

On the basis of its physiological characteristics, its 16S rDNA sequence and DNA–DNA hybridization data, strain AL585T represents an new species of Pyrococcus, and we propose to name it Pyrococcus glycovorans sp. nov.

Description of Pyrococcus glycovorans Barbier, Godfroy, Meunier and Raguénès sp. nov.

Pyrococcus glycovorans (gly.co.vo'rans. Gr. adj. glykos sweet, referring to glucose; L. part. pres. vorans eating, devouring; M.L. part. adj. glycovorans eating glucose).

Cells are cocci with a mean diameter of 1 µm (range 0.5–1.5 µm), motile with polar flagella. Cell division occurs by constriction. Obligately anaerobic. Grows optimally at 30 g l⁻¹ sea salt and pH 7.5. At atmospheric pressure, growth occurs between 75 and 104 °C. Obligately chemo-organotrophic. Ferments protein

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>P. furiosus Var1 (DSM 3689)</th>
<th>P. woesei DSM 3773</th>
<th>P. abyssi GE5 (DSM 1382)</th>
<th>P. horikoshii JCM 9974</th>
<th>Strain AL585T</th>
</tr>
</thead>
<tbody>
<tr>
<td>G+C content (mol%)</td>
<td>37.5</td>
<td>37.5</td>
<td>44-45</td>
<td>44</td>
<td>47</td>
</tr>
<tr>
<td>Growth temperature (°C)</td>
<td>100</td>
<td>100-102</td>
<td>96</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>pH:</td>
<td>7</td>
<td>Up to 105*</td>
<td>6-8</td>
<td>5-8</td>
<td>7-5</td>
</tr>
<tr>
<td>NaCl concentration (g l⁻¹)</td>
<td>3-5</td>
<td>ND</td>
<td>4-8</td>
<td>5-8</td>
<td>2-5-9.5</td>
</tr>
<tr>
<td>Carbon sources used</td>
<td>Yeast extract, peptone, tryptone, meat extract, casein, starch, maltose, cellobiose, glycerogen, pullulan, pyruvate</td>
<td>Yeast extract, tryptone, glycerogen, starch, gelatin</td>
<td>Brain heart infusion, yeast extract, meat extract, peptone, tryptone, yeast extract, yeast extract, beef extract, tryptone, casein</td>
<td>Peptone, yeast extract, beef extract, tryptone, casein, 20 amino acids</td>
<td>Brain heart infusion, yeast extract, peptone, meat extract, starch, chitin, maltose, cellobiose, glucose, 20 amino acids</td>
</tr>
</tbody>
</table>

No minimum temperature for growth was given.

Table 1. Comparison of characteristics of strain AL585T and other Pyrococcus species

and proteolytic products and carbohydrates, especially glucose. Sulfur is not necessary for growth but significantly enhances final cell concentrations when grown in closed culture vessels. Sulfur is reduced to \(\text{H}_2\text{S} \). At low cell concentrations, under optimal conditions and at atmospheric pressure, doubling time is 0.5 h and maximal concentrations at the beginning of the stationary phase can reach \(5 \times 10^4 \) cells ml\(^{-1}\). G + C content is 47 mol \%. 16S rDNA sequence comparisons locate \textit{Pyrococcus glycovorans} within the \textit{Thermococcales}, in the archael domain. The GenBank/EMBL accession number for the 16S rDNA sequence is Z70247.

The type strain, AL585\(^T\) (= CNCM I-2120\(^T\)), was isolated from pieces of a deep-sea smoker and its covering of alvinellid tubes collected at 13\(^\circ\) N at a depth of 2650 m on the East Pacific Rise.

ACKNOWLEDGEMENTS

We thank the chief scientists of the American oceanographic cruise MVT'90, Richard A. Lutz and Robert Vriezenhoek (Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA) and our colleagues Anne-Marie Alayse and Daniel Desbruyères (IFREMER, Centre de Brest, France) for collection of samples. We thank the captain and crew of \textit{N.O. Atlantis II} and the \textit{D. S. V. Alvin} pilots and support crew. We also thank Dominique Marie (CNRS, Station Biologique, Roscoff, France) and Germaine Dorange (Universite de Bretagne Occidentale, UFR Sciences, Brest, France) for their technical support, respectively for flow cytometric analysis and transmission electron microscopy. We thank Pascale Fritayre, Aline Blanchet and Audrey Roux, who helped technically during their training periods at IFREMER. This work was supported by IFREMER, the French Research Ministry and Région Bretagne.

REFERENCES

