Rhizobium etli bv. mimosae, a novel biovar isolated from *Mimosa affinis*

En Tao Wang, M. Antonio Rogel, Alejandro Garcia-de los Santos, Julio Martínez-Romero, Miguel A. Cevallos and Esperanza Martínez-Romero

Author for correspondence: Esperanza Martínez-Romero. Tel: +52 73 13 16 97. Fax: +52 73 17 55 81. e-mail: emartine@cifn.unam.mx

Fifty rhizobial isolates from root nodules of *Mimosa affinis*, a small leguminous plant native to Mexico, were identified as *Rhizobium etli* on the basis of the results of PCR–RFLP and RFLP analyses of small-subunit rRNA genes, multilocus enzyme electrophoresis and DNA–DNA homology. They are, however, a restricted group of lineages with low genetic diversity within the species. The isolates from *M. affinis* differed from the *R. etli* strains that originated from bean plants (*Phaseolus vulgaris*) in the size and replicator region of the symbiotic plasmid and in symbiotic-plasmid-borne traits such as *nifH* gene sequence and organization, melanin production and host specificity. A new biovar, bv. mimosae, is proposed within *R. etli* to encompass *Rhizobium* isolates obtained from *M. affinis*. The strains from common bean plants have been designated previously as *R. etli* bv. phaseoli. Strains of both *R. etli* biovars could nodulate *P. vulgaris*, but only those of bv. mimosae could form nitrogen-fixing nodules on *Leucaena leucocephala*.

Keywords: *Rhizobium etli*, *Mimosa affinis*, symbiotic plasmid, genetic diversity

INTRODUCTION

The Leguminosae is one of the largest families of plants. A remarkable characteristic of many species in this family is that they establish symbioses with nitrogen-fixing bacteria. In comparison with the large number of leguminous species, there is a very limited number of species within the genera *Rhizobium*, *Sinorhizobium*, *Bradyrhizobium*, *Azorhizobium* (for reviews see Martínez-Romero & Caballero-Mellado, 1996; Young & Haukka, 1996) and the newly proposed *Mesorhizobium* (Jarvis et al., 1997) and *Allorhizobium* (de Lajudie et al., 1998b) that form nodules on the roots and sometimes on the stems of legumes. Species such as *Rhizobium galegae* (Lindström, 1989), *Rhizobium huautlense* (Wang et al., 1998), *Rhizobium mongolense* (van Berkum et al., 1998), *Rhizobium hainanense* (Chen et al., 1997), *Mesorhizobium huakuii* (Chen et al., 1991), *Mesorhizobium ciceri* (Nour et al., 1994), *Mesorhizobium mediterraneum* (Nour et al., 1995), *Mesorhizobium tianshanense* (Chen et al., 1995; Tan et al., 1997) and *Azorhizobium caulinodans* (Dreyfus et al., 1988) have been proposed from the study of novel isolates obtained from leguminous plants that had not been previously analysed.

The family Leguminosae is considered to be of tropical or subtropical origin (Raven & Polhill, 1981). Many tropical species are virtually unknown elsewhere. In a survey of legume-nodule bacteria based on small-subunit (SSU) rRNA gene sequences, most of the *Rhizobium* and *Bradyrhizobium* strains belonging to new varieties were isolated from the tropics and subtropics (Oyaizu et al., 1993). The subfamily Mimosoideae seems to have branched earlier than the subfamily Papilionoideae in the evolution of the family Leguminosae (Doyle, 1995), and less is known about symbiotic bacteria from the Mimosoideae than from the Papilionoideae. *Leucaena*, *Acacia* and *Mimosa* are genera within the subfamily Mimosoideae. Root-nodule isolates from species within the genera *Leucaena* and *Acacia* have been found to be highly diverse (Dupuy et al., 1994; Wang et al., 1999b; de Lajudie et al., 1994, 1998a). *Rhizobium* strains from *Mimosa caesalpiniaefolia* were isolated by Campelo & Dobereiner (1969). Extensive isolations were made by

Abbreviations: ET, electrophoretic type; MLEE, multilocus enzyme electrophoresis; SSU, small-subunit.

The GenBank accession number for the *nifH* gene sequence of isolate Mim2 is AF107621.
Table 1. Isolates and strains used in this study and their relevant characteristics

<table>
<thead>
<tr>
<th>Isolate or strain</th>
<th>SSU rRNA PCR-RFLP pattern*</th>
<th>ET†</th>
<th>Plasmid profile (kbp)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates from M. affinis in Huautla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mim2, Mim5, Mim6, Mim8, Mim10, Mim1-1, Mim1-3, Mim3-4, Mim3-6, Mim4-4, Mim4-5, Mim6-2, Mim6-3</td>
<td>DBEC</td>
<td>2</td>
<td>390, 450, 600, 1000</td>
</tr>
<tr>
<td>Mim1-2</td>
<td>DBEC</td>
<td>2</td>
<td>390, 450, 600, >1000</td>
</tr>
<tr>
<td>Mim1-4, Mim8-5, Mim10-2</td>
<td>DBEC</td>
<td>2</td>
<td>390, 600, 1000</td>
</tr>
<tr>
<td>Mim7-5</td>
<td>DBEC</td>
<td>2</td>
<td>100, 390, 450, 600, 1000</td>
</tr>
<tr>
<td>Mim2-3, Mim2-4, Mim2-6, Mim6-4, Mim6-5, Mim7-2, Mim7-3, Mim9-3, Mim9-4, Mim10-3, Mim10-4</td>
<td>DBEC</td>
<td>2</td>
<td>ND</td>
</tr>
<tr>
<td>Mim7-4</td>
<td>DBEC</td>
<td>3</td>
<td>200, 350, 530, 630, 800</td>
</tr>
<tr>
<td>Mim3-5, Mim3-7, Mim4-2, Mim4-3, Mim5-2, Mim5-3, Mim5-4, Mim5-5, Mim8-2</td>
<td>DBEC</td>
<td>4</td>
<td>390, 510, 600, 1000</td>
</tr>
<tr>
<td>Mim8-3, Mim8-4, Mim9-2, Mim9-5, Mim10-1, Mim10</td>
<td>DBEC</td>
<td>4</td>
<td>ND</td>
</tr>
<tr>
<td>Mim1, Mim7, Mim11, Mim12</td>
<td>DBEC</td>
<td>5</td>
<td>185, 300, 300, 510, 600, 900</td>
</tr>
<tr>
<td>Mim9</td>
<td>DBEC</td>
<td>5</td>
<td>ND</td>
</tr>
<tr>
<td>Isolates from M. affinis in Cuernavaca soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MimC1</td>
<td>CBEC</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MimC2</td>
<td>CBEC</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Reference strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. etli CFN42*</td>
<td>DBEC</td>
<td>6</td>
<td>150, 175, 270, 390, 510, 630</td>
</tr>
<tr>
<td>R. etli F8</td>
<td>ND</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>R. etli Bra5</td>
<td>ND</td>
<td>2</td>
<td>ND</td>
</tr>
<tr>
<td>R. etli Viking1</td>
<td>ND</td>
<td>7</td>
<td>ND</td>
</tr>
<tr>
<td>R. tropici CFN299</td>
<td>EBFD</td>
<td>8</td>
<td>185, 225, 410, >1000</td>
</tr>
<tr>
<td>R. tropici CIA1899*</td>
<td>FBDB</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>R. leguminosarum USDA2370*</td>
<td>DBBD</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>R. galegae HAMBI540*</td>
<td>IBDF</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>R. gallicum R602sp*</td>
<td>CBAD</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>R. giardinii H152*</td>
<td>AAAI</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Rhizobium sp. Lc37</td>
<td>CBEC</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>M. loti NZP2213*</td>
<td>GGFF</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>M. huakuii CCBAU2609*</td>
<td>FHF</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>M. ciceri USDA3378*</td>
<td>GGFF</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>M. Mediterraneum USDA3392*</td>
<td>HGGF</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sinorhizobium sp. Lc28</td>
<td>ADEA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>S. melloti USDA1002*</td>
<td>ADAA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>S. fredii USDA205*</td>
<td>EDAA</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

* RFLP patterns of SSU rRNA gene PCR-fragments digested individually with restriction enzymes *MspI*, *HinIII*, *HhaI* and *Sau3AI* are indicated by four letters. Agarose gels (3%) in 0.5 x TBE buffer were used for separation of the digests.
† ETs were designated according to the combination of electrophoretic patterns of 10 metabolic enzymes in starch gels.
‡ Plasmid patterns were detected in Eckhardt gels (0.75% agarose) and the sizes of the plasmids were estimated from their migration distances using the computer program SEQAIID II version 3.5 (Rhoads & Roufa, 1989) and the plasmids of *R. etli* CFN42 (Romero et al., 1991) and *R. tropici* CFN299 (Geniaux et al., 1995; Martínez et al., 1987) as molecular size standards. The symbiotic plasmids identified by *nif* gene probing are marked in bold.
ND, Not done.
Trinick (1980) from *Mimosa invisa* and *Mimosa pudica*. Some of these isolates were capable of nodulating and fixing nitrogen in *Leucaena*, and the reverse was also true. Four isolates from *M. invisa* and *M. pudica* nodules obtained from the Philippines were similar to *Rhizobium leguminosarum* and *Bradyrhizobium japonicum* and to a new lineage related to *R. galegae*, on the basis of comparison of 16S rRNA gene sequences (Oyaizu et al., 1993).

In *Rhizobium* species, a significant proportion of the genome and its diversity is composed of plasmids, with the genetic information for nodulation and nitrogen fixation being located on the so-called symbiotic plasmids (reviewed by Martinez et al., 1990). Specifically, a number of *nod* genes involved in the production of *Nod* factors (Dénarié et al., 1996), which are key signal molecules in nodule formation (Relic et al., 1994), and *nif*HDK genes that encode for nitrogenase are located on the symbiotic plasmids. Symbiotic plasmids may be transferred among *Rhizobium* species as well as to related genera, such as *Agrobacterium*, under laboratory conditions (Martinez et al., 1987; Novikova & Safronova, 1992). Plasmid transfer in natural rhizobial populations has been assessed by comparing chromosomal and plasmid phylogenies (Amarger et al., 1997; Haukka et al., 1998; Souza & Euguiarte, 1997), and some earlier literature was reviewed by Martinez-Romero (1994) and Martinez-Romero & Caballero-Mellado (1996). Recently, the complete nucleotide sequence of a very-broad-host-range symbiotic plasmid showed that different genes in this plasmid may have different origins, suggesting a chimeric nature for symbiotic plasmids (Freiberg et al., 1997).

Phaseolus vulgaris has been documented as a promiscuous host for rhizobia (Martinez et al., 1985) and diverse bean-nodulating rhizobia have been recorded (van Berkum et al., 1996; Eardly et al., 1995; Geniaux et al., 1993; Hernández-Lucas et al., 1995; Laguerre et al., 1993). Species in which strains have originated from bean plants include *Rhizobium etli* (Segovia et al., 1993), *Rhizobium gallicum* (Amarger et al., 1997), *Rhizobium giardinii* (Amarger et al., 1997), *R. leguminosarum* and *Rhizobium tropici* (Martinez-Romero et al., 1991). Strains within *R. mongolense* (van Berkum et al., 1998) and various *Sinorhizobium* species (summarized by Hernández-Lucas et al., 1995) were isolated from other host plants, but they also nodulated bean plants. In the reported phylogenetic trees based on the full SSU rRNA gene sequence (such as Amarger et al., 1997; Wang et al., 1998, 1999a), *R. etli* was closer to *R. leguminosarum* than to other species, and this was also the case when *nodD* gene sequences of *R. leguminosarum* bv. phaseoli and *R. etli* were compared (Laguerre et al., 1996).

To describe more completely the diversity of *Rhizobium* from tropical areas, we isolated and analysed symbiotic bacteria from *Mimosa affinis*, a legume species native to Sierra de Huautla, a rainforest nature reserve in central Mexico. *M. affinis* is a small, annual plant that has never been domesticated and whose symbiotic bacteria have not been characterized. Our results showed that they corresponded to a limited group of lineages within *R. etli*, the dominant symbiotic bacterium for *Phaseolus vulgaris* (Segovia et al., 1993; Caballero-Mellado & Martínez-Romero, 1999). Thus, we considered it of interest to pursue the molecular comparison of symbionts from *P. vulgaris* and *M. affinis*, with the aim of better understanding how *Rhizobium* lineages diverge and diversify.

METHODS

Nodule isolation and culture. Eleven *M. affinis* plants were collected from two populations 20 km apart in Sierra de Huautla, and one plant was grown in Cuernavaca soil. Nodules were surface-sterilized and were crushed on PY (3 g yeast extract, 5 g peptone and 0.7 g calcium chloride 1 l) plates. Bacterial isolates and reference strains (Table 1) were maintained in YM medium stabs (Vincent, 1970). Melanin production was detected in cultures grown on semi-solid PY medium (0.3 g agar l−1) with added tyrosine (100 mg l−1) and copper sulphate (20 mg l−1).

Plant nodulation tests. Seeds of *Leucaena leucocephala* cv. Peruvian and *Phaseolus vulgaris* cv. Negro Xamapa were surface-sterilized (Martinez et al., 1985) and pre-germinated seeds were placed in flasks with cotton or vermiculite with N-free plant nutrient solution (Fähræus, 1957). Plants were maintained in growth chambers at 28 °C with a photoperiod of 15 h. Nodulation of the plants was observed after 4 weeks of growth and the nitrogen-fixation ability of the nodules was assessed by comparison of the leaf colour of the inoculated plants with control plants that were not inoculated.

SSU rRNA gene typification. Primers fD1 and rD1 (Weisburg et al., 1991) were used to synthesize SSU rRNA gene fragments by PCR with Taq polymerase. The PCR fragments were digested individually with restriction enzymes *MspI*, *SaU3AI*, *HindIII* and *HhaI* and the RFLP of the amplified SSU rRNA genes were visualized in agarose gels as described by Laguerre et al. (1994). Patterns were compared with type strains from the majority of described *Rhizobium*, *Sinorhizobium* and *Mesorhizobium* species. The RFLP of the rRNA operons were determined by hybridizing Southern blots of EcoRI digests with a PCR product of the full 16S rRNA gene from *Bradyrhizobium japonicum USDA* 6.

Multilocus enzyme electrophoresis (MLEE). Cell extracts from the new isolates and from reference strains were prepared from 40 ml liquid cultures in PY medium. The following metabolic enzymes were assayed: isocitrate, malate, alanine, threonine and glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase, indophenol oxidase and esterase. Enzyme activities were revealed with the standard procedures described by Selander et al. (1986). The mean genetic diversity for a locus was calculated as

\[
\theta = \frac{1}{n-1} \left[1 - \frac{1}{n} \sum_{i=1}^{n} X_i^2 \right]
\]

where \(x_i\) is the frequency of the \(i\)-th allele at the locus and \(n\) is the number of electrophoretic types (ETs) in the sample. Mean diversity (\(H\)) is the arithmetic mean of \(\theta\) over all loci assayed. A cluster analysis was performed using the neighbour-joining method (Nei & Li, 1979).
Table 2. Plasmids used in this study

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEM15</td>
<td>pSUP205 derivative with nifKDH of R. etli CFN42 (Morett et al., 1988)</td>
</tr>
<tr>
<td>pH3</td>
<td>pSUP202 derivative containing the replicator region (RepA, RepB, RepC genes and intergenic sequences) of p42d in a 5–6 kbp HindIII fragment (Ramirez-Romero et al., 1997)</td>
</tr>
<tr>
<td>pKRE-1</td>
<td>Cosmid (M. A. Cevallos, unpublished); the same fragment as outlined for pH3 was cloned in pRK7813, a wide-host-range vector (Stanley et al., 1987)</td>
</tr>
<tr>
<td>pAGS10</td>
<td>3.6 kbp EcoRI–BanHI fragment containing the entire lpsf1 and lpsf2 region of CFN42 plasmid b cloned in pRK7813, Tc' (Garcia-de los Santos & Brom, 1997)</td>
</tr>
<tr>
<td>pAGS4</td>
<td>718 bp internal fragment (Xhol–BanHI) of lpsf2 from pAGS10 cloned in pBluescript II SK1(–), Cb' (Garcia-de los Santos & Brom, 1997)</td>
</tr>
<tr>
<td>pUC19</td>
<td>Cloning vector (Sambrook et al., 1989)</td>
</tr>
<tr>
<td>pRK2013</td>
<td>Helper plasmid for conjugation, Km' (Ditta et al., 1980)</td>
</tr>
</tbody>
</table>

1979) based on the genetic distance data and a dendrogram was constructed. Linkage disequilibrium was calculated as described previously (Souza et al., 1992).

Plasmid analysis. The cellular plasmid contents of some isolates were visualized in 0.75% agarose gels by a modified Eckhardt technique (Hynes & McGregor, 1990). Plasmids of *R. etli* CFN42 (Romero et al., 1991) and *R. tropici* CFN299 (Geniaux et al., 1994; Martinez et al., 1987) were used as molecular size standards and as positive controls for hybridization analyses. The electroetoretic plasmid patterns were hybridized as described previously (Wang et al., 1998) to the following probes labelled with [32P]dCTP (Amerham): a 600 bp internal SalI fragment of nifH from pEM15 (Morett et al., 1988), a 5–6 kbp HindIII fragment from pH3 containing the replicator region of CFN42 plasmid b (Ramirez-Romero et al., 1997), a PCR-amplified internal lipopolysaccharide gene (*lpsf1*) fragment (250 bp) from pAGS10 (Garcia-de los Santos & Brom, 1997) and pAGS4, in which a 0.718 kbp internal fragment of *lpsf2* was cloned (Garcia-de los Santos & Brom, 1997) (Table 2).

DNA fingerprinting and hybridization. DNA was isolated by standard methods (Sambrook et al., 1989) from representative isolates and reference strains. DNA fingerprinting patterns were visualized after electrophoretic separation in 10% agarose gels of fragments digested with the restriction enzymes BanHI or EcoRI. DNA digested with BstEII was used as the molecular size marker for estimation of fragment sizes in hybridization tests. The DNA restriction products were transferred to Hybond-N* membranes (Amersham) and hybridized under stringent conditions at 65 °C. The probes used for plasmid hybridization were also used for this experiment. Additional probes to evaluate DNA–DNA homology were total DNA digested with EcoRI from either CFN42 or Mim2 used in filter DNA hybridization, as described previously (Wang et al., 1998).

nifH gene sequence. PCR products were obtained from a representative isolate, Mim2, using *Pwo* DNA polymerase (Boehringer) and primers nifH-1 and nifH-2, corresponding to nucleotides 256 and 856 of the *Sinorhizobium melloti* nifH gene (Eardly et al., 1992). The PCR products were checked by electrophoresis in 1% agarose and were purified from the gel using a Nucleotrap extraction kit for nucleic acids. The PCR fragments were cloned in the *SalI* site of pUC19 vector (Sambrook et al., 1989) by using the PCR cloning kit (blunt-end) from Boehringer as specified by the manufacturer and the resulting clones were extracted using the High Pure plasmid isolation kit (Boehringer) and sequenced using an AutoRead sequencing kit on an ALF DNA sequencer (Pharmacia). The sequence obtained from Mim2 was compared with other sequences in the database.

Matings. Transconjugants of Mim1, a representative isolate from *M. affinis*, were obtained by transferring Tn5-mob-labelled plasmids (a–f) from CFN42 derivatives (Brom et al., 1992) in triparental matings using plasmid pRK2013 as a helper. Transconjugants were selected by their resistance to kanamycin (50 μg ml^{–1}). Nodulation tests were performed for the transconjugants containing two symbiotic plasmids from both the donor (CFN42) and the receptor (Mim1) on *P. vulgaris* and *L. leucocephala* plants. pKRE-1 (M. A. Cevallos, unpublished), a cosmid containing the replicator region of the symbiotic plasmid, plasmid d, of CFN42, was introduced into isolates Mim1, Mim7-4 and Mim7-5 and transconjugants were selected by their resistance to tetra-cycline (3 μg ml^{–1}).

RESULTS

Isolation and phenotypic characteristics. One hundred and forty isolates were obtained from the nodules on 11 *M. affinis* plants collected from Huautla and two isolates were obtained from one plant grown in soil from Cuernavaca. All the isolates from Huautla had the same colony morphology and growth rate on PY medium. All of them formed gummy and pearly colonies >2 mm in diameter after 3 d incubation on PY plates. Colonies of the two isolates from Cuernavaca soil were not gummy. Fifty isolates from Huautla were chosen randomly for further characterization.

The 50 selected *Rhizobium* isolates from Huautla and reference strains for *R. etli* (Table 1) were resistant to...
nalidixic acid (20 μg ml⁻¹) and did not grow in LB. These isolates had duplication times of 3 h in PY liquid medium, similar to R. etli strains. No melanin production was obtained from the isolates even after 1 month incubation in soft agar containing tyrosine and copper, while CFN42 readily produced the brown pigment.

Nodulation tests

All 50 isolates from M. affinis obtained in Huautla were capable of nodulating P. vulgaris cultivar Negro Xamapa, with nodules appearing around 5-6 d after inoculation. The mean number of nodules per plant ranged from 30, in the case of inoculation with isolate Mim5, to 60, in the case of inoculation with isolate Mim1, after 17 d. The nodules were pink and the leaves of the nodulated plants were dark-green, as were the positive controls inoculated with R. etli CFN42, while the control non-inoculated plants were yellow-green. Isolates Mim1, Mim2, Mim3-7, Mim7 and Mim7-4 formed nodules on L. leucocephala and nodulated plants were green, while non-inoculated plants or those inoculated with R. etli strains CFN42 and F8 did not have nodules and were yellow.

Ribosomal types

The ribosomal types were defined on the basis of the PCR–RFLP and RFLP patterns of SSU rRNA genes. RFLP patterns of PCR-synthesized SSU rRNA genes were identical in R. etli strain CFN42 and in all 50 isolates from Huautla, and differed from those of R. tropici CIAT899 and CFN299, S. meliloti USDA1002, R. galegae HAMB1540, Mesorhizobium loti NZP2213, R. leguminosarum USDA2370, M. huakuii CCBAU-2609, M. ciceri USDA3378, M. mediterraneum USDA3392, S. fredii USDA205, R. gallicum FL27 and R. giardinii H152 (Table 1). The two strains isolated from M. affinis sown in Cuernavaca soil had patterns identical to each other and to one of our previously isolated strains from Leucaena (Lc37), which corresponded to a novel lineage within the genus Rhizobium (Wang et al., 1999b) (Table 1). Additional characteristics of these two isolates from Cuernavaca will be reported elsewhere and only the characterization of the isolates from Huautla is presented here. Hybridization patterns (RFLPs) of EcoRI-restricted DNAs to the 16S rRNA gene were identical in R. etli CFN42 and in the isolates from M. affinis obtained in Huautla (not shown).

Electrophoretic types

The 50 isolates from M. affinis in Huautla were grouped into four ETs (ET 2-5) (Table 1) based on the analysis of ten enzymes. ETs 3, 4 and 5 were composed only of isolates from M. affinis, corresponding to one, 14 and five isolates in each. ET 2 contained 30 isolates and a reference strain, Bra5. The other reference strains for R. etli, CFN42, F8 and Viking1, and R. tropici CFN299 formed distinct ETs. The isolates from M. affinis and the reference strains for R. etli were intermingled in a close cluster (genetic distance less than 0.3) that was distant from R. tropici strain CFN299 (genetic distance 0.6) (Fig. 1). We obtained a mean of 12.5 isolates per ET among the isolates from M. affinis, which is larger than the mean of 1.2 obtained with isolates from P. vulgaris (Pérez-Ramírez et al., 1998). The mean genetic diversity (H) for ETs from Mimosa was 0.2. ETs of the isolates and reference strains for R. etli were in linkage equilibrium, with the V_e/V_o value (0.951) close to 1, meaning that the microsymbionts of M. affinis and P. vulgaris share a pool of chromosomal genes with no barriers for chromosomal recombination.

DNA–DNA homology and fingerprinting

In agreement with the MLEE results, we found close similarity of isolates from M. affinis and R. etli reference strains from P. vulgaris on the basis of DNA–DNA homology (Fig. 1). When total DNA from R. etli CFN42 was used as a probe in three independent assays, the homology was 73–99% with isolates Mim2, Mim7-4, Mim3-7 and Mim1, representing ETs 2, 3, 4 and 5, respectively; homology was lower with Viking1 (65%) and R. tropici CFN299.
E. T. Wang and others

Fig. 2. Examples of plasmid profiles of isolates from M. affinis obtained in Huautla (lanes 3–12). Lanes: 3, Mim1 (185, 300, 300, 510, 600, 900 kbp); 4, Mim4 (390, 450, 600, 1000); 5, Mim1-3 (390, 450, 600, 1000); 6, Mim1-4 (390, 600, 1000); 7, Mim7-4 (200, 350, 530, 630, 800); 8, Mim5-4 (390, 510, 600, 1000); 9, Mim4-3 (as lane 8); 10, Mim4-2 (as lane 8); 11, Mim8-5 (as lane 6); and 12, Mim7-4 (as lane 7). Molecular sizes were estimated from migration distances using the computer program SEQAID II version 3.5 (Rhoads & Roufa, 1989) and the plasmids of R. tropici CFN299 (lanes 1 and 13) (185, 225, 410, >1000 kbp) (Geniaux et al., 1995; Martinez et al., 1987) and R. etli CFN42 (lanes 2 and 14) (150, 270, 390, 510, 630 kbp) (Romero et al., 1997) as molecular size markers.

Identical DNA fingerprints were obtained from the restriction of total DNA with EcoRI among some strains (Fig. 3). The replicator region of the symbiotic plasmid, pSym, from R. etli strain CFN42 (Ramirez-Romero et al., 1997) did not hybridize to any plasmid in isolates representing closely related species obtained from GenBank are presented in Table 3. A dendrogram showing nifH sequence relatedness is shown in Fig. 4. The Mim2 nifH gene is closely related to the R. etli CFN42 nifH gene (97.3% identity in nucleotide sequences, 98.9% identity in amino acid sequences). R. gallicum bv. gallicum, R. etli CFN42, R. etli Olivia 4 and the isolate Mim2 formed a close cluster that was supported by high bootstrap values (Fig. 4). Their sequence identities were greater than 95.7%, while they had identities to other species of 83.5–90.5%.

Plasmid profiles and symbiotic plasmid characterization

All isolates from M. affinis tested had plasmids (Table 1) ranging from 100 kbp to larger than 1000 kbp. Different plasmid patterns were observed (Fig. 2). Megaplasmids (≥1000 kbp) were observed in all the isolates tested from ETs 2 and 4. Plasmid profiles seemed to be conserved in genetically related isolates. Nine isolates within ET 4 shared the same plasmid pattern, and the four isolates in ET 5 had another identical pattern. Although four different plasmid patterns (with three to five plasmids in each) were obtained in 17 ET 2 isolates, two common bands (390 and 600 kbp) were observed in all of them. The 600 kbp plasmid was common to all the isolates tested within ETs 2, 4 and 5, but was not observed in Mim7-4, the only isolate in ET 3.

The symbiotic plasmids, identified by hybridization of Eckhardt gels to R. etli nif genes, were 600 kbp in most of the isolates from M. affinis tested (Mim1-3, Mim1-4, Mim8-5, Mim4-2, Mim4-3, Mim4-5, Mim1 and Mim7, representing ETs 2, 4 and 5) and slightly larger (630 kbp in Mim7-4), the sole isolate corresponding to ET 3. Multiple copies of the nifH gene were observed in the isolates and in R. etli reference strains (Fig. 3). The nifH gene organization was the same in all isolates from M. affinis tested representing ETs 2, 4 and 5, which had symbiotic plasmids with the same molecular size, and different from that found in R. etli strains from P. vulgaris (Fig. 3). Two strongly hybridizing bands of around 15 and 1.5 kbp and one faint band (3.0 kbp) were obtained from the isolates (Fig. 3).

The sequence identities among the nifH genes obtained from isolate Mim2 and those from related species obtained from GenBank are presented in Table 3. A dendrogram showing nifH sequence relatedness is shown in Fig. 4. The Mim2 nifH gene is closely related to the R. etli CFN42 nifH gene (97.3% identity in nucleotide sequences, 98.9% identity in amino acid sequences). R. gallicum bv. gallicum, R. etli CFN42, R. etli Olivia 4 and the isolate Mim2 formed a close cluster that was supported by high bootstrap values (Fig. 4). Their sequence identities were greater than 95.7%, while they had identities to other species of 83.5–90.5%.
Table 3. Sequence identities (%) of internal nifH gene fragments (558 bp) among R. etli bv. mimosae Mim2 and related strains

Sequences were aligned and compared using SEQED and GAP programs in the Wisconsin package.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R. etli Mim2</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R. etli CFN42</td>
<td>97.3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R. etli Olivia 4</td>
<td>97.3</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R. gallicum FL27</td>
<td>96.1</td>
<td>95.7</td>
<td>95.7</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R. tropici CIAT899</td>
<td>90.2</td>
<td>89.4</td>
<td>89.4</td>
<td>90.4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rhizobium sp. Br6001</td>
<td>90.5</td>
<td>89.8</td>
<td>89.8</td>
<td>90.6</td>
<td>97.0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R. leguminosarum</td>
<td>84.1</td>
<td>83.5</td>
<td>83.5</td>
<td>83.1</td>
<td>82.3</td>
<td>82.6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>S. meliloti</td>
<td>86.6</td>
<td>86.6</td>
<td>86.6</td>
<td>87.4</td>
<td>86.6</td>
<td>87.0</td>
<td>83.3</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>S. terangae ORS1009</td>
<td>89.6</td>
<td>88.7</td>
<td>88.7</td>
<td>90.2</td>
<td>88.8</td>
<td>88.9</td>
<td>83.7</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>S. saheli ORS609</td>
<td>88.7</td>
<td>88.3</td>
<td>88.3</td>
<td>88.4</td>
<td>87.2</td>
<td>88.2</td>
<td>83.7</td>
<td>87.8</td>
<td>94.3</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>S. fredii USDA191</td>
<td>90.3</td>
<td>90.0</td>
<td>90.0</td>
<td>91.7</td>
<td>89.2</td>
<td>88.9</td>
<td>83.9</td>
<td>91.4</td>
<td>90.7</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>Mesorhizobium sp. DWO366</td>
<td>89.8</td>
<td>89.6</td>
<td>89.6</td>
<td>90.4</td>
<td>89.0</td>
<td>90.0</td>
<td>82.2</td>
<td>87.2</td>
<td>88.9</td>
<td>89.9</td>
</tr>
</tbody>
</table>

Fig. 4. Phylogram showing relatedness of partial nifH gene sequences of isolate Mim2, a representative of the 50 isolates from M. affinis obtained in Huautla, and reference strains. Sequences were aligned using the PILEUP program in the GCG package. The neighbour-joining method in the CLUSTAL W package (Thompson et al., 1994) was used for the analysis of sequence data. Bootstrap confidence values were estimated from 500 replications of each sequence.

General plasmid comparison

By hybridization with plasmid patterns, genes homologous to lpsβ were found either on a plasmid similar in size (185 kbp) to plasmid b of R. etli CFN42 (175 kbp), in isolates Mim1 and Mim7 (ET 5), or on a megaplasmid (1000 kbp), in Mim1-4, Mim7-5 (ET 2) and Mim4-3 (ET 4) (not shown). Two restriction patterns (1 and 2) were observed in the hybridization of EcoRI-digested total DNA from isolates Mim1-4, Mim7-5 (ET 2), Mim4-3 (ET 4), Mim1 and Mim7 (ET 5), representing different plasmid patterns, to R. etli CFN42 lpsβ genes (Fig. 5). Hybridization pattern 1 had two hybridizing bands (9.2 and 7.8 kbp) and was found in the isolates of ET 5 from M. affinis that have homology to lpsβ1 on a 185 kbp plasmid. Only one hybridizing band (3.6 kbp), which we designated pattern 2, was obtained from the isolates of ET 2 and ET 4. These isolates were found to have the lpsβ genes located on megaplasmids (1000 kbp). Identical hybridization results were obtained with the two lpsβ gene probes (lpsβ1 and 2), which demonstrated that the two lpsβ genes were in one gene cluster in the isolates, as for those in CFN42.
Conjugal transfer of plasmids

We transferred each of the six plasmids (a–f) from strain CFN42 (Brom et al., 1992) to the isolate Mim1. Ten transconjugants (colonies) from each plasmid strain CFN42 (Brom et al., 1992) were analysed. Plasmids a, b, c, d and e (150, 175, 270, 390 and 510 kbp, respectively) could be transferred easily to Mim1 receptors. We found that plasmids a and b were maintained in Mim1 transconjugants. It seems that CFN42 plasmids c and e were also maintained but the plasmid profiles were not changed after the conjugal transfer were analysed. Plasmids a, b, c, d and e (150, 175, 270, 390 and 510 kbp, respectively) in isolate Mim1, since Tn5 was maintained but the plasmid profiles were not changed and the hybridizations to Tn5-mob were obtained in the 270 and 510 kbp plasmids in the transconjugants. The CFN42 symbiotic plasmid, plasmid d, was maintained in Mim1 in all 10 transconjugants and caused the curing of a 300 kbp plasmid, the same one that was lost upon the introduction of pKRE-1 (carrying the pSym replicator region) but perhaps different from that which was lost with plasmid c transfer, according to their relative positions in Eckhardt gels. Transconjugants bearing symbiotic plasmids from both CFN42 and Mim1 were tested for nodulation in Leucaena and bean and they formed similar numbers of nodules as the original strains. Fifteen isolates from the nodules formed by Mim1 transconjugants with two symbiotic plasmids were kanamycin resistant (marker for the R. etli CFN42 symbiotic plasmid) and Eckhardt plasmid profiles showed that both symbiotic plasmids were maintained in these nodule isolates. Plasmid f was not maintained in Mim1, in comparison with transconjugants containing any of the other plasmids. Several kanamycin-resistant colonies obtained after the conjugal transfer of CFN42 plasmid f (630 kbp) did not have a plasmid corresponding to this size and Tn5-mob was shown by hybridization to be located on the megaplasmid in Mim1 recipients.

DISCUSSION

On the basis of current taxonomy for root-nodule bacteria (Graham et al., 1991), greater than 70% DNA–DNA homology, as well as distinctive phenotypic characters, is one of the main criteria for defining species, although in some cases strains sharing lower homology (40–60%) have been found within a single species, as in the cases of R. tropici types A and B (Martinez-Romero et al., 1991) and Mesorhizobium plurifarium (de Lajudie et al., 1998a). The SSU rRNA gene sequence identity is used mainly as a criterion to estimate the generic position of bacteria, and strains within some species, such as M. loti, can have divergent SSU rRNA genes (de Lajudie et al., 1998a). In this study, identical PCR–RFLP patterns of SSU rRNA genes were found among the 50 isolates from M. affinis in Huautla and the type strain of R. etli in individual digestions with four restriction enzymes. This result indicated a close phylogenetic relationship between the isolates and the type strain of R. etli, since around 99% sequence identities were obtained between the SSU rRNA genes that shared identical PCR–RFLP patterns digested with the same four enzymes in our previous reports (Wang et al., 1998, 1999a). This relationship between RFLP and sequence data was confirmed by a computer-simulated RFLP analysis of SSU rRNA genes (Moyer et al., 1996). To describe the specific status of the isolates, we characterized them further by genetic and phenotypic approaches. We concluded that the new isolates from Huautla were members of the species R. etli, on the basis of their close relationships and linkage equilibrium in MLEE analysis, high DNA–DNA homology (73–99%), similar DNA fingerprints and several common phenotypic features (growth rate, colony morphology and resistance to nalidixic acid) to the reference strain of the species. Multiple nifH genes are a common characteristic of R. etli and R. leguminosarum (Martinez et al., 1985; Quinto et al., 1982; Segovia et al., 1993; Sessitsch et al., 1997) and they were also found in the isolates from M. affinis (Fig. 3). We did not include strain F16, the single R. etli strain reported to nodulate both bean and Leucaena plants (Hernández-Lucas et al., 1995), since further analysis of the strain used in that study showed us that it did not correspond to R. etli (data not shown).

The limited genetic diversity (H = 0.2) of the isolates from M. affinis revealed by MLEE analysis might be related to the small sampling size (11 plants) and the restricted sampling site. However, far larger genetic diversity was observed among R. etli bv. phaseoli strains (H = 0.6) obtained from a more restricted geographical area (Caballero-Mellado & Martinez-Romero, 1999). The large diversity of R. etli bv. phaseoli strains is striking (Piñero et al., 1988) and the species limits of R. etli have been difficult to define (Eardly et al., 1995). This may result from the population of R. etli harbouring the bv. phaseoli plasmid enlarging and diversifying more than that of bv. mimosae.

Generally, an MLEE group at a genetic distance of less than 0.5 shares more than 70% DNA homology (Caballero-Mellado & Martinez-Romero, 1999; Martinez-Romero et al., 1991; Segovia et al., 1993; Wang et al., 1999a). This is also the case in this study (Fig. 1). The DNA homology data were also generally related to the genetic distances obtained when the ETs within an MLEE group were compared (Fig. 1). Mim2 had homology of 95% with F8, 100% with Mim3-7, 93% with Mim1, 80% with CFN42 and 74% with Viking1 in DNA–DNA hybridization. The genetic distances between Mim2 and these five isolates or strains increased gradually from 0.1 to 0.2 to 0.3 for Viking1 in MLEE analysis. CFN42 had very similar genetic distances (0.20–0.23) to the isolates in ETs 1–5 in MLEE analysis and the DNA homology values were also quite similar (73–99%).

The metabolic enzymes tested in this study were found to be chromosomally encoded in R. etli strain CFN42, since strains cured of each of the plasmids presented...
bands identical to the wild-type strain (S. Brom & J. Caballero-Mellado, personal communication). We observed conserved plasmid patterns in isolates within some ETs, such as ET 4 and ET 5. Although a common plasmid (the symbiotic plasmid) was found, different plasmid patterns were obtained among different ETs and among the 17 isolates within ET 2, the ET with the largest number of isolates, showing that plasmids constitute the most diverse components in these populations.

Even though extensive screenings of Mesoamerican legumes have been performed, we had previously isolated R. etli mainly from Phaseolus bean nodules and not from any wild legumes (Martinez et al., 1985; Wang et al., 1998, 1999b; Barrera et al., 1997). It is remarkable that the new R. etli host plant is a member of the subfamily Mimosoideae that has not been cultivated and comes from an undisturbed area. Wild Phaseolus species have also been reported to occur in Huautla (O. Dorado, personal communication); thus, both hosts share a geographical distribution area, which may have facilitated their sharing of symbionts. We show here that, although very similar at the chromosomal level, isolates from P. vulgaris and M. affinis have differences attributable to diverging plasmids, especially the symbiotic plasmids.

The best characterized of all plasmids in Rhizobium are the symbiotic plasmids and, consequently, our comparison of isolates from Phaseolus and Mimosa is most complete for these plasmids. Differential nodulation specificity was found among isolates from M. affinis and P. vulgaris. Isolates from both P. vulgaris and M. affinis could nodulate P. vulgaris, but only the isolates from M. affinis could nodulate L. leucocephala. Different sizes of symbiotic plasmids were recorded among the isolates or strains from these two host plants (Table 1). The hybridization patterns for nifH, which had been located on the symbiotic plasmids, observed for the isolates from M. affinis (Fig. 3) were not similar to any of the nifH patterns reported in strains from P. vulgaris (Martinez et al., 1985; Perez-Ramirez et al., 1998; Sessitsch et al., 1997), indicating a different genetic organization of the symbiotic plasmid of the isolates from M. affinis from that of strains from P. vulgaris. No homology to the replicator sequence CFN42 pSym was observed by hybridization and by mating tests on the plasmids in the isolates from M. affinis. Melanin production, a typical feature of most R. etli strains from P. vulgaris (Martinez-Romero, 1996; Michiels et al., 1994), is symbiotic-plasmid-encoded and none of the isolates from M. affinis produced it. We concluded that the symbiotic plasmids were different in the isolates from P. vulgaris and M. affinis.

All R. etli bv. phaseoli strains have symbiotic plasmids with homology to the CFN42 pSym replicator region (Ramirez-Romero et al., 1997), which was not the case in the isolates in R. etli bv. mimosae. In nature, strains could exist with both symbiotic plasmids found in the isolates from P. vulgaris and M. affinis, since these symbiotic plasmids belong to different compatibility groups (see Results) and have different replicator regions. Under laboratory conditions, Mim1 transconjugants carrying an additional symbiotic plasmid from CFN42 were stable, even after passage through bean nodules. Nevertheless, strains with two symbiotic plasmids may be less competitive for nodule formation and, as such, are not normally recovered from nodules.

The nifH gene-based phylogram we obtained is similar to that reported previously (Haukkka et al., 1998). Two different R. etli bv. phaseoli strains, CFN42 and Olivia 4, were found to have identical nifH sequences (accession numbers M15941 and M55227, respectively). The similarity of the nifH genes among bv. phaseoli and bv. mimosae plasmids suggests that they evolved from a common ancestor. It is remarkable that rhizobia that can nodulate Leucaena as well as bean, such as R. etli bv. mimosae (described here) and R. gallicicum bv. gallicicum FL27 (Eardy et al., 1992), have nifH genes sharing the same ancestry as those of R. etli bv. phaseoli (Fig. 4). It seems that R. etli bv. phaseoli lost the capacity to nodulate Leucaena and became more specialized for bean. The evolution of R. etli bv. phaseoli from a generalist to a specialist might have been driven by the extensive cultivation of bean. Similarly, it seems that the R. fredii symbiotic plasmid (such as that from USDA257) evolved from a more promiscuous plasmid, as both NGR234 and USDA257 symbiotic plasmids are very similar (Krishnan et al., 1992; X. Perret and W. J. Broughton, personal communication). Interestingly, USDA257, like R. etli bv. phaseoli, no longer nodulates Leucaena, and the genetic differences from NGR234 involved in this change of specificity have been analysed (Krishnan et al., 1992). It has been assumed that coevolution has occurred in the Rhizobium-legume interaction, mainly related to symbiotic-plasmid-borne genes (Ueda et al., 1995). Our data support this hypothesis, since both R. etli bv. mimosae and bv. phaseoli share the same gene pool, as revealed by MLEE analysis and DNA–DNA hybridization, but the symbiotic plasmids are different.

In R. etli bv. phaseoli, plasmids other than the pSym play a role in symbiosis (Brom et al., 1992), for example CFN42 plasmid f has reiterated copies of fixNOQP, fixGHI and fixK and an unusual fixL gene, and bacteria cured of this plasmid are less efficient in nitrogen fixation (Girard et al., 1998). Plasmids such as plasmids c, e and f from CFN42 seem to be conserved in isolates from both Mimosa and Phaseolus. The high DNA–DNA homology encountered among the isolates from Mimosa and Phaseolus is also indicative of chromosomal as well as of plasmid homology, as discussed previously for the interpretation of DNA–DNA homology values in rhizobia (Martinez-Romero, 1994). It was thus of interest to test the lpsp genes as markers for plasmid b of R. etli CFN42. CFN42 plasmid b has also been assigned a role in the symbiosis with bean (Brom et al., 1992) and is highly conserved among different R. etli and R. legum-
inosarum strains (García-de los Santos & Brom, 1997). The Lpsβ genes are also conserved in isolates from Mimosa, although on a different replicon in some of them.

Scarce nodulation was obtained on M. affinis roots when plants were grown in Cuernavaca soil, and the two isolates were not R. etli, although M. affinis is also native to Cuernavaca (O. Dorado, personal communication). We found a similar situation with R. huautlense, a bacterium nodulating Sesbania herbacea, which was found only in Sierra de Huautla and not in Cuernavaca soils (Wang et al., 1998). This probably indicates that Huautla, perhaps because of its geographical isolation, is a unique source of bacterial and plant diversity.

Tropical forests have a large diversity of plant species and also highly diverse microbial populations. Tropical plants may be hosts for new Rhizobium species, but this is not always the case. It was surprising that strains isolated from taxonomically distant host plants in previously unexplored environments corresponded to strains already described, largely from agricultural systems (Moreira et al., 1998). Similarly, we did not recover a new rhizobial lineage from M. affinis, but rather a well-known species differing in its type of symbiotic plasmid and apparently also in other plasmids.

Common Rhizobium genetic backgrounds may harbour symbiotic plasmids with different specificities. The biovar designation in Rhizobium species is meant to refer to the symbiotic plasmids within a single type of chromosome, for example bv. viciae, bv. trifolii and bv. phaseoli within R. leguminosarum (Jordan, 1984) and bv. sesbaniae and bv. acaciae within S. terangaee (Boivin et al., 1997). When the species R. etli was described (Segovia et al., 1993), the existence of biovars, bv. phaseoli and bv. viciae, within this species was discussed. Due to the small number of bv. viciae isolates analysed, the Subcommittee on the taxonomy of Rhizobium and Agrobacterium approved the species but deferred assignment of R. etli biovars for the time being (Martinez-Romero & Jarvis, 1993).

On the basis of our results, we propose a novel biovar within the species R. etli, bv. mimosae, for the isolates from M. affinis obtained in Huautla. The nodulation on L. leucocephala and non-production of melanin could be phenotypic features to distinguish the new biovar from the previously reported biovar, bv. phaseoli (Segovia et al., 1993). The sizes, replicator regions and nifH gene organizations of the symbiotic plasmids and nifH gene sequences illustrate the genetic differences between these two biovars. Furthermore, there seems to exist a 'null' biovar of rhizobium lacking symbiotic plasmids. Non-symbiotic R. etli strains were recovered from the bean rhizosphere more frequently than symbiotic ones (Segovia et al., 1991). The natural occurrence of these rhizobia, lacking plasmids but genetically intermingled with symbiotic bacteria, suggests that the former may be receptors in plasmid transfers at a frequency to prevent the non-symbiotic lineage from diverging from the symbiotic ones, a somewhat similar situation to that of genetic lateral transfer occurring in M. loti (Sullivan et al., 1995).

ACKNOWLEDGEMENTS

We thank Dr Michael Dunn for critically reading the manuscript and Dr Oscar Dorado for offering the Mimosa affinis plants and seeds. Partial financial support was from grant IN202097 from DGAPA UNAM, México.

REFERENCES

Trinick, M. J. (1980). Relationships among the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa

