Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter

Sophie Mouné, Nathalie Manač’h, Agnès Hirschler, Pierre Caumette, John C. Willison and Robert Matheron

A novel halophilic fermentative bacterium has been isolated from the black sediment below a gypsum crust and a microbial mat in hypersaline ponds of Mediterranean salterns. Morphologically, physiologically and genetically this organism belongs to the genus *Haloanaerobacter*. *Haloanaerobacter* strain SG3903T (T = type strain) is composed of non-sporulating long flexible rods with peritrichous flagella, able to grow in the salinity range of 5–30% NaCl, with an optimum at 14–15%. The strain grows by fermenting carbohydrates or by using the Stickland reaction with either serine or H₂ as electron donors and glycine-betaine as acceptor, which is reduced to trimethylamine. The two species described so far in the genus *Haloanaerobacter* are not capable of Stickland reaction with glycine-betaine + serine; however, *Haloanaerobacter chitinovorans* can use glycine-betaine with H₂ as electron donor. Strain SG3903 thus represents the first described strain in the genus *Haloanaerobacter* capable of the Stickland reaction with two amino acids. Although strain SG3903 showed 67% DNA–DNA relatedness to *H. chitinovorans*, it is physiologically sufficiently different from the two described species to be considered as a new species which has been named *Haloanaerobacter salinarius* sp. nov.

Keywords: marine salterns, halophilic fermentative bacteria, *Haloanaerobacter*, glycine-betaine, Stickland reaction

INTRODUCTION

The anoxic sediments of hypersaline environments are often characterized by a large number of halophilic anaerobic bacteria belonging to the domain Bacteria. Among them the most frequently isolated are fermentative bacteria (Rainey et al., 1995) and anoxygenic phototrophs (Ollivier et al., 1994; Imhoff & Suling, 1996). Many types of halophilic bacteria have been isolated from the Dead Sea, inland salt lakes or subterranean waters in oilfields (Oren, 1992; Ollivier et al., 1994; Rainey et al., 1995; Imhoff & Suling, 1996; Ravot et al., 1997). Some of them were isolated from thalassohaline environments such as solar salterns; they include phototrophic bacteria of the family *Chromatiaceae* (Caumette et al., 1988, 1991a, 1997), sulfate-reducing bacteria (Caumette et al., 1991b) and fermentative bacteria (Zhilina & Zavarzin, 1990; Zhilina et al., 1991a, b, 1992; Liaw & Mah, 1992; Simankova et al., 1993).

During ecological investigations in solar salterns of the French Mediterranean coast (Salin-de-Giraud, Camargue, Rhône Delta), we isolated several new species of phototrophs and sulfate reducers that developed at the sediment surface of certain hypersaline ponds characterized by gypsum deposits and...
salinities ranging from 15 to 30% (Caumette, 1993; Caumette et al., 1994). Recently a number of fermentative halophilic bacterial strains belonging to the order Halanaerobiales were isolated from the black anoxic sediment of these ponds, where they co-exist with the sulfate reducers. So far, the order Halanaerobiales contains 17 species, grouped into nine genera and two families, Halanaerobiaceae and Halobacteroidaceae (Bhupathiraju et al., 1994; Cayol et al., 1995; Rainey et al., 1995; Tsai et al., 1995; Zhilina et al., 1996; Ravot et al., 1997). These species grow mainly by fermenting carbohydrates; one of them (Acetohalobium arabaticum) was found to be able to use amino acids such as glycine-betaine (Zhilina & Zavarzin, 1990) which is a common compound in hypersaline environments and is used as compatible solute by a large variety of halophilic organisms and microorganisms (Yancey et al., 1982; Galinski & Trüper, 1994). Among our strains isolated from the Salin-de-Giraud salterns, several were able to use glycine-betaine as substrate; morphologically and physiologically, they were similar to Acetohalobium arabaticum. Others were found to be able to use glycine-betaine only in the presence of hydrogen or serine. One of these strains, strain SG 3903T, was selected for further characterization. According to morphological, physiological and genetical studies, this strain was closely related to the species Haloanaerobacter chitinovorans, but sufficiently different to be proposed as a new species. This paper describes its characteristics in comparison with Haloanaerobacter chitinovorans, in particular its ability to carry out the Stickland reaction with glycine-betaine as electron acceptor and hydrogen or serine as electron donors. This strain SG 3903T is consequently proposed as a new species with the name Haloanaerobacter salinarus sp. nov.

METHODS

Sources of strains. Strain SG 3903T was isolated from the microbial mat at the sediment surface of hypersaline ponds where total salinity ranges from 13 to 20% depending of the seasons, in the saltern of Salin-de-Giraud (Camargue, France).

Haloanaerobacter lacunaris strain DSM 6640T and Haloanaerobacter chitinovorans OGC 229T (DSM 9569T) were obtained from the DSM. Haloanaerobacter lacunaris (Zhilina et al., 1991b) originated from the silt of Lake Chokrak, Crimea (25% total salinity) and Haloanaerobacter chitinovorans (Liaw & Mah, 1992) was isolated from the sediment of salterns in Chula Vista, CA, USA (20-30% total salinity).

Media, isolation and culture conditions. The basal synthetic medium used for the growth of strain SG 3903T contained, per litre of distilled water: NaCl, 150 g; MgCl₂, 6H₂O, 15 g; KCl, 3 g; NH₄Cl, 0.5 g; KH₂PO₄, 0.35 g; CaCl₂, 2H₂O, 0.05 g; yeast extract, 0.1 g; 0.1% resazurin solution, 1 ml; trace-element solution SL12 (Overmann et al., 1992), 1 ml; selenite-tungstate solution (Na₃SeO₃, 5H₂O, 6 mg l⁻¹; Na₂WO₄, 2H₂O, 8 mg l⁻¹; NaOH, 0.4 g l⁻¹), 1 ml; NaHCO₃, 2 g; Na₂S, 9H₂O, 0.5 g; vitamin V7 solution (Pfenning et al., 1981), 1 ml; pH 7.2-7.4. The medium was prepared under a mixture of gas (N₂/CO₂; 90:10, v/v) according to the method of Pfenning et al. (1981). Prior to utilization, the medium was supplemented with organic substrates as energy and carbon sources (see Table 1 for substrate utilization).

Pure cultures of strain SG 3903T were obtained from repeatedly prepared deep agar dilution series (Pfenning & Trüper, 1981) in Hungate tubes with H₂/CO₂ (90:10, v/v) in the gas phase, and glycine-betaine as carbon source and electron acceptor. The tubes were incubated at 30°C in the dark.

Purity of the cultures was checked microscopically and by inoculation into different media specific for aerobic bacteria and sulfate reducing bacteria.

Pure strains were grown in liquid cultures under a gas phase (H₂/CO₂; 90:10, v/v) in 60 ml serum bottles stoppered with butyl rubber stoppers, using the Hungate anaerobic technique. The basal medium was supplemented with glycine-betaine + H₂ or with glycine-betaine + serine. After growth at 30°C, the strains were then stored at 4°C in the dark, for periods of 2-4 months.

Microscopy. Microscopic observations and photomicrographs were made with an Olympus photomicroscope (OM2) according to the method of Pfenning & Wagener (1986). Flagella were observed by transmission electron microscopy with a JEOL 1200 ES electron microscope after negative staining with 1% (w/v) tungstic acid neutralized to pH 7.2. The fine structure of the cells was studied by transmission electron microscopy after fixation of a cell pellet with osmic acid and ultrathin sectioning of the cells according to Glazer et al. (1971).

Physiological tests. Utilization of carbon sources and electron donors was tested in triplicate in basal liquid medium with substrate concentrations as given in Table 1. Growth tests for utilisable substrates, the utilization of optimum concentrations of NaCl and MgCl₂, 6H₂O, optimum pH, optimum temperature and sulfide tolerance were performed in completely filled 25 ml screw-cap tubes as described by Caumette et al. (1988).

For aerobic growth tests, the basal medium without hydrogen carbonate and sulfide was buffered with 0.4 M Tris/HCl and supplemented with glucose as substrate. The growth was checked in test tubes open to air through a cotton stopper. Antibiotic and antibacterial susceptibility was tested in completely filled screw-cap tubes with the growth medium for maintenance of strains supplemented with the following substances: ampicillin (40 μg ml⁻¹), chloramphenicol (20 μg ml⁻¹), tetracycline (40 μg ml⁻¹), erythromycin (40 μg ml⁻¹) kanamycin (40 μg ml⁻¹) and sodium taurocholate (50 μg ml⁻¹) according to the method described by Oren (1990).

Growth was measured by following the optical density of cultures at 450 nm (Bausch & Lomb; Spectronic 20) over a period of 10 d.

Vitamin requirement was tested in 60 ml serum bottles by growth tests through five consecutive transfers in synthetic medium free of vitamins and yeast extract. Catalase was tested by adding a few drops of 3% (v/v) H₂O₂ to a cell pellet on a microscope slide. Utilization of sulfate, sulfite, thiosulfate or nitrate was tested in Postgate medium B (Postgate, 1984), previously made free of sulfate, in 60 ml serum bottles, with glucose as electron donor. After growth, sulfur
compound utilization was determined by sulfide production, as revealed by the formation of a black precipitate of FeS in the liquid culture; nitrate reduction was determined by nitrite production revealed by the formation of a red colour upon addition of Griess reagent.

Analytical procedures. The presence of H_2 and CO_2 among fermentation products was detected with a Chrompack CP 9001 gas chromatograph equipped with a thermal conductivity detector (135°C) and a semi-capillary column Poraplot Q (25 m long, 0.53 mm i.d.) operated at 35°C with N_2 (12 ml min$^{-1}$) or helium (12 ml min$^{-1}$) as the carrier gases for H_2 or CO_2 detection, respectively.

A flame-ionization detector (220°C) was used for alcohol determination with the same column operated at 150°C with helium (12 ml min$^{-1}$) as the carrier gas.

Methyamines were determined by gas chromatography using the same gas chromatograph equipped with a 3 m x 3 mm column (Chromosorb 103, 80/100 mesh) and with a flame-ionization detector (200°C). The column was operated at 110°C with helium (25 ml min$^{-1}$) as the carrier gas. Before injection, samples of cell-free culture medium were prepared according to the method of Hippe et al. (1979).

Organic acids were determined with a HPLC apparatus, equipped with a Shimadzu LC-6A pump, a PYE Unicam UV detector (at 210 nm) and a Rezex-type organic acid (Phenomenex) column (300 x 7.8 mm); 0.005 M H_2SO_4 was used as the solvent at a flow rate of 0.5 ml min$^{-1}$. The volume of the injection loop was 20μl.

Glycine-betaine and serine were analysed with the same HPLC fitted with a Hypersil-NH$_2$ column (Touzart and Matignon); acetonitrile/10 mM phosphate buffer pH 7 (75/25) solution was used as the solvent at a flow rate of 1 ml min$^{-1}$.

DNA base composition, sequence of the 16S rDNA gene and DNA–DNA hybridization

Isolation of genomic DNA. Strain SG 3903T was grown on H_2 + glycine-betaine, lyophilized, and stored under 2-propanol. Before use, the cells were centrifuged to remove 2-propanol, and resuspended and washed in 0.1% SDS/10 mM Tris/HC1/1 mM EDTA, pH 8.0 (Vargas et al., 1995). Genomic DNA was then prepared as described by Ausubel et al. (1989).

Determination of $G+C$ content. The $G+C$ content of genomic DNA from SG 3903T was determined by high-performance liquid chromatography as described by Mesbah et al. (1989), using bacteriophage lambda DNA as standard.

Amplification of 16S rDNA by PCR. A 1-4 kb fragment of the gene encoding 16S rRNA was amplified by PCR using the following primers specified by Amann et al. (1995): sense primer, 5'-AGAGTTTGATCCTGGCCTAA-3'. Bacteria, positions 8–26 (Escherichia coli numbering); antisense primer, 5'-AGCGCGGTTGGTGTA(G)C3'. Universal, positions 1406–1392 (E. coli numbering). The PCR reaction mixture contained (in 100 μl): 0.5 μg genomic DNA; 200 pmol each primer; 50 mM KCl; 10 mM Tris/HC1, pH 9.0; 0.1% Triton X-100; 1.25 mM MgCl$_2$; 0.2 mM each dNTP; 5% (v/v) DMSO; 2.5 U Tag DNA polymerase (Promega). An initial cycle composed of 3 min denaturation at 94°C, 2 min annealing at 50°C, and 3 min extension at 72°C was followed by 34 cycles of 1 min at 94°C, 2 min at 50°C and 3 min at 72°C.

Cloning and sequencing of the PCR product. The PCR reaction mixture was extracted with 100 μl chloroform/isomyl alcohol (24:1) and purified by centrifugation through a MicroSpin S-400 HR column (Pharmacia Biotech). After treatment with T4 DNA polymerase to remove protruding DNA residues (Sambrook et al., 1989), the 1.4 kb PCR product was cloned into the Smal site of pUC19. The cloned insert was then sequenced entirely on both strands, using Sequenase enzyme (USB Biochemicals). The resulting sequence (1383 nucleotides) is EMBL accession number Y14212.

Genetic analysis. The 16S rRNA/rDNA sequences of 14 species of fermentative halophilic anaerobic bacteria were obtained from the EMLB Database, using the accession numbers quoted by Rainey et al. (1995). The following strains were used: (sequence accession numbers in parentheses): Haloanaerobacter praebalens DSM 2228T (M59123), Haloanaerobium alcaliphilum DSM 8275T (X81850), Haloanaerobium saccharolyticum subsp. saccharolyticum DSM 6643T (X89069), Haloanaerobacter lacunaris DSM 7379T (X89070), Haloanaerobium acetoyethylicum DSM 3532T (X89071), Haloanaerobium salignis ATCC 51327T (L22890), Halocella cellulolytica DSM 7362T (X89072), Halothermothrix orenii OCM 544T (L22016), Haloanaerobacter chitinovorans OGC 229T (X89076), Haloanaerobacter lacunaris DSM 6640T (X89075), Halobacteroides halobius DSM 5150T (X89074), Orenia marismortui DSM 5156T (X89073), Sporolobacter lortetii DSM 3070T (M59122), Acetohalobium arabaticum DSM 5501T (X89077) and Megaphaera eldeni (M26493). The database entry for Haloanaerobium acetoyethylicum (X89070) was found to be identical to that for Haloanaerobium saccharolyticum subsp. senegalense (X89070), but this has since been corrected (F. Rainey, personal communication). These sequences were aligned with the strain SG 3903T sequence by the CLUSTAL W method, using the MEGALIGN program of the DNASTAR software package. The alignment was then modified to remove regions containing unidentified bases or gaps of more than three nucleotides. The subsequent analysis was based on a comparison of approximately 1240 nucleotides.

DNA–DNA hybridization. The DNA–DNA hybridization was performed between strain SG 3903T and Haloanaerobacter chitinovorans OGC 229T. The test was carried out at the Identification Service of DSMZ (Braunschweig, Germany). DNA was isolated by chromatography on hydroxyapatite by the procedure of Cashion et al. (1977). DNA–DNA hybridization was carried out as described by De Ley et al. (1970), with the modification described by Huss et al. (1983) and Escara & Hutton (1980) using a Gilford System model 2600 spectrometer equipped with a Gilford model 2527-R thermoprocessor and plotter. Renaturation rates were computed with the TRANSFER.BAS program by Jahnke (1992).

RESULTS

Enrichment and isolation

Different kinds of fermentative bacteria were enriched from black anoxic sediment below a thin laminated photosynthetic microbial mat and a gypsum crust in hypersaline ponds of Salin-de-Giraud (Camargue,
France) where the salinity ranged between 13 and 20%. The laminated microbial mat was composed of halophilic phototrophic purple bacteria, as described previously (Caumette et al., 1988, 1991a). From the anoxic sediment, rich in acid-volatile sulfide due to a high sulfate reduction activity (Caumette et al., 1994), the enrichment culture of fermentative bacteria showed a large variety of cell types.

Several strains were purified and isolated by using different fermentable substrates such as glucose, glycine-betaine or glycine-betaine + hydrogen. Among the pure strains obtained, some were facultative anaerobes resembling vibrios, others were strict anaerobes able to ferment mainly glucose or, in a few cases, glycine-betaine. Some strains needed H₂ to degrade glycine-betaine to trimethylamine; one of these, strain SG 3903T, was selected for further characterization.

Morphology and fine structure

The individual cells of strain SG 3903T were long, thin, flexible rods, 0.3–0.4 μm in width and 5–8 μm in length, in young cultures grown with glycine-betaine + H₂ (Fig. 1a). When cultured with glucose as substrate, single cells were larger and less flexible (Fig. 1b). After the end of exponential growth, they rapidly formed sphaeroplasts.

The cells were motile. Negatively stained cells showed peritrichous flagella (data not shown). Electron microscopic examination of thin sections of strain SG 3903T revealed a typical Gram-negative layered cell envelope (Fig. 2a, b). In aged cultures, distortion of the envelope and formation of degenerate cells and sphaeroplasts were detected (Fig. 2a). Endospores were not detected by either phase-contrast microscopy or electron microscopy, not even after pasteurization (80 °C, 20 min) of the samples. Colonies were translucent and glossy in surface agar and opaque in deep agar. They were white to slightly yellow with entire edges; their diameter ranged from 1 to 2 mm.

Growth and physiology

Strain SG 3903T grew over a large range of salinity (Fig. 3a). Growth was observed at NaCl concentrations between 5 and 30% (w/v), with optimal growth at 14–15%. At the optimal NaCl concentration, the optimal temperature for growth of strain SG 3903T was 45 °C (Fig. 3b) and growth occurred at temperatures between 10 and 50 °C. The optimum pH was 7.4–7.8 and growth was possible between pH 5.5 and pH 8.5. For optimal growth, strain SG 3903T required a minimum of 1 mM Mg²⁺. No growth was obtained in the presence of oxygen.

The strain showed a high sulfide tolerance, up to 14 mM. Neither growth factors nor vitamins were required.

Strain SG 3903T was not capable of dissimilatory reduction of inorganic nitrogen (NO₃⁻) or sulfur compounds (SO₄²⁻, SO₃²⁻, S₂O₃²⁻) thus showing a strict
The growth rate has been calculated from exponential growth of Haloanaerobacter salinarius strain SG 3903T in liquid culture as a function of (a) salinity and (b) temperature. The growth rate has been calculated from exponential growth measured by OD_{450}.

Fig. 3. Growth of Haloanaerobacter salinarius strain SG 3903T in liquid culture as a function of (a) salinity and (b) temperature. The growth rate has been calculated from exponential growth measured by OD_{450}.

fermentative metabolism. Catalase test was negative. The strain did not use sulfate or nitrate as sulfur or nitrogen sources but it could use cysteine as both nitrogen and sulfur source. Strain SG 3903T was sensitive to chloramphenicol and erythromycin. Anisomycin, kanamycin, tetracycline, or Ntaurocholate did not inhibit growth. Strain SG 3903T used the following fermentable substrates: glucose, fructose, galactose, mannose, trehalose, sucrose, maltose, raffinose, cellobiose, glucosamine, N-acetyl-glucosamine and mannitol (Table 1).

The strain was also able to use glycine-betaine in the presence of an electron donor (hydrogen or serine) via a Stickland reaction (Fig. 4). Other amino acids were tested but were not able to act as electron donors for the reduction of glycine-betaine. With other amino acid pairs, the Stickland reaction was not observed in the strain SG 3903T. Neither glycine-betaine nor serine alone were used as fermentable substrates (Fig. 4).

Fermentation products are listed in Table 2. From glucose as substrate, the major products obtained were ethanol, acetate, formate, propionate, CO₂ and H₂. Lactate was detected in very low concentrations. When glycine-betaine + H₂ were used as substrates, strain SG 3903T excreted acetate, 2-propanol, trimethylamine and CO₂. In the Stickland reaction with glycine-betaine and serine the strain produced acetate, trimethylamine, CO₂ and NH₃. Formate and acetate were also detected in very low concentrations. Monomethylamine, dimethylamine, dimethylglycine and sarcosine were never detected as fermentation products of glycine-betaine with either H₂ or serine as electron donors.

As strain SG 3903T proved to be genetically closely related to Haloanaerobacter (see below), Haloanaerobacter chitinovorans OGC 229T and Haloanaerobacter lacunaris DSM 6640T were tested for possible Stickland reactions. Haloanaerobacter lacunaris was not able to use glycine-betaine with either serine or hydrogen, whereas Haloanaerobacter chitinovorans used only glycine-betaine + hydrogen for growth.

Genomic characteristics and genetic relationships

The DNA base composition of strain SG 3903T was 31.6 mol % G + C. A near complete sequence (1383 nucleotides) of the 16S rRNA gene of strain SG 3903T was determined. The sequence (positions 8–1406, E. coli numbering according to Winker & Woese, 1991) was aligned and a genetic analysis was performed with 16S rRNA gene sequences of 14 representatives of the closest phyla in the domain Bacteria. A distance matrix based on the Jukes & Cantor (1969) method showing the percentage similarities and divergences between the different sequences has been constructed. The sequence from Megasphaera elsdenii was included as the outgroup for rooting the dendrogram. The dendrogram derived from the distance matrix is shown in Fig. 5. The tree clearly shows the branching of the fermentative halophilic anaerobic bacteria into two clusters (Patel et al., 1995) or families (Rainey et al., 1995). Strain SG 3903T was most closely related to Haloanaerobacter chitinovorans (98.9 % similarity) and Haloanaerobacter lacunaris (97.5 % similarity). These two species showed a similarity of 98.1 % to each other. The closest species in the neighbouring genus was Halobacteroides halobius, which showed a similarity with strain SG 3903T of 85.6, 86.2 and 86.6 %, respectively.

As strain SG 3903T and Haloanaerobacter chitinovorans were very closely related (98.9 % similarity), a DNA–DNA hybridization was performed between strain SG 3903T and Haloanaerobacter chitinovorans OGC 229T. The DNA–DNA pairing value obtained was 67 %.

DISCUSSION

Strain SG 3903T is a Gram-negative, flexible, long, rod-shaped, carbohydrate fermenting, non-spore-forming, halophilic anaerobe which grows in the presence of 50–300 g NaCl l⁻¹. These characteristics and its G + C content (31.6 mol %) are consistent with assignment of strain SG 3903T to the family Halobacteroidaceae (Rainey et al., 1995). The genetic relatedness study based on comparison of 16S rRNA sequences showed that strain SG 3903T is clearly a member of this family (Fig. 5). In the cluster of Halobacteroidaceae, strain SG 3903T is included with the group forming the genus Haloanaerobacter which is, so far, composed of two species: Haloanaerobacter chitinovorans and Haloanaerobacter lacunaris (Liaw &
+ , Substrate utilized; − , substrate not utilized. The following substrates were not used by strain SG 3903T (mM except where stated): arabinose (6); inulin (6); dextran (6); xylan (6); salcin (6); gluconate (6); dextrin (6); lactose (6); melizitose (6); rhamnose (6); sorbose (6); xylose (6); glycogen (6); ascorbate (6); inositol (6); sorbitol (6); ethanol (6); methanol (6); dulcitol (6); adonitol (6); valine (6); sarcosin (10); threonine (6); ornithine (6); alanine (6); histidine (6); urea (6); gelatin (0.1%); pectin (0.1%); yeast extract (0.1%); crotonate (6). The following amino acid pairs were tested but were not utilized: glycine-betaine + alanine; glycine-betaine + leucine; glycine-betaine + valine; glycine-betaine + phenylalanine; glycine-betaine + histidine; glycine-betaine + threonine; glycine-betaine + proline; glycine-betaine + ornithine; glycine-betaine + tryptophane; alanine + glycine; leucine + proline; iso-leucine + proline; valine + ornithine; phenylalanine + leucine; histidine + sarcosin.

indicating that strain SG 3903T is close to the species Haloanaerobacter chitinovorans.

Like Haloanaerobacter chitinovorans and Haloanaerobacter lacunaris, Haloanaerobacter strain SG 3903T was isolated from a thalassohaline environment (hypersaline lagoon or saltern). These bacteria, with salinity optima between 12 and 18%, are well adapted to the salinity of their environments (Table 3). They grow by fermenting mainly carbohydrates. They are not able to use amino acids as sole substrates (Liaw & Mah, 1992). However, the data demonstrated that our strain Haloanaerobacter SG 3903T was able to reduce glycine-betaine to trimethylamine with hydrogen or serine as electron donors (Fig. 4). In contrast, Haloanaerobacter lacunaris was not capable of glycine-betaine reduction whereas Haloanaerobacter chitinovorans could use glycine-betaine only with hydrogen. Thus, bacteria belonging to the genus Haloanaerobacter do not use exclusively carbohydrates as stated by Liaw & Mah (1992), but some strains or species can also use certain amino acids mainly glycine-betaine via a Stickland reaction with serine or H₂ as electron donors.

In our strain, Haloanaerobacter SG 3903T, glucose and glycine-betaine were fermented according to the following equations (Table 2):

4·17 glucose → 3 ethanol + 3 propionate + 2 acetate + formate + 5 CO₂ + H₂ (1)
2·5 glycine-betaine + 4·05 H₂ → 2-propanol + 2·5 trimethylamine + 0·95 acetate + 0·1 CO₂ + 1·9 H₂O (2)
glycine-betaine + 1·32 serine + H₂O → trimethylamine + 2 acetate + 1·32 CO₂ + 1·32 NH₃ (3)
Table 2. Fermentation products and fermentation balance obtained after growth of Haloanaerobacter strain SG 3903T with different substrates under optimal conditions

<table>
<thead>
<tr>
<th>Substrates and products</th>
<th>Concentration (mM)</th>
<th>Oxidation degree</th>
<th>Oxidation degree per equation</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>4.17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethanol</td>
<td>3</td>
<td>-2</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>Acetate</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Formate</td>
<td>1</td>
<td>+1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>Propionate</td>
<td>3</td>
<td>-1</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>5</td>
<td>+2</td>
<td>+10</td>
<td></td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>Glycine-betaine</td>
<td>2.5</td>
<td>-4</td>
<td>-10</td>
<td>-14.05</td>
</tr>
<tr>
<td>Acetate</td>
<td>0.95</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2-Propanol</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Trimethylamine</td>
<td>2.5</td>
<td>-4.5</td>
<td>-11.25</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>0.1</td>
<td>+2</td>
<td>+0.2</td>
<td>-14.05</td>
</tr>
<tr>
<td>Serine</td>
<td>1.32</td>
<td>-0.5</td>
<td>-0.66</td>
<td>-4.66</td>
</tr>
<tr>
<td>Glycine-betaine</td>
<td>1</td>
<td>-4</td>
<td>-4</td>
<td>-4.66</td>
</tr>
<tr>
<td>Acetate</td>
<td>2.32</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethylamine</td>
<td>1</td>
<td>-4.5</td>
<td>-4.5</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>1.32</td>
<td>+2</td>
<td>+2.64</td>
<td></td>
</tr>
<tr>
<td>NH3</td>
<td>1.32</td>
<td>-1.5</td>
<td>-1.98</td>
<td>-3.84</td>
</tr>
</tbody>
</table>

During the reduction of glycine-betaine with serine as electron donor, an additional product should be formed for a stoichiometric equilibrium in equation 3. This product was not detected during analysis.

The use of glycine-betaine is of ecological importance in hypersaline environments. Glycine-betaine is a compatible solute synthesized and stored in a large variety of organisms (Yancey et al., 1982) and bacteria (Galinski & Trüper, 1994); it is one of the major osmolytes in halophilic bacteria and thus widely distributed in hypersaline ecosystems with microbial mats. It is thus not surprising to find bacteria able to use this compound as substrate in such environments.

So far, only one species of halophilic fermentative bacteria Acetohalobium arabaticum (Zhilina & Zavarzin, 1990) has been described as able to use glycine-betaine as sole substrate for growth.

However, two marine fermentative bacteria (Clostridium halophilum and Clostridium litorale) are able to use glycine-betaine via a Stickland reaction (Fendrich et al., 1990), and many other non halophilic bacteria have been described as able to reductively cleave glycine-betaine into acetate and trimethylamine (Naumann et al., 1983; Möller et al., 1984, 1986; Heijthuijsen & Hansen, 1989).

In hypersaline environments, two genera are thus currently considered to be able to degrade glycine-betaine: the genus Acetohalobium and the genus Haloanaerobacter. In the genus Haloanaerobacter, strain SG 3903T is close to the species Haloanaerobacter chitinovorans but is sufficiently separated to be considered as a new species. Particularly, Haloanaerobacter strain SG 3903T is able to use glycine-betaine via a real Stickland reaction with two amino acids (glycine-betaine and serine) whereas Haloanaerobacter chitinovorans strain OGC 229T cannot; it can reduce glycine-betaine only with hydrogen. These unusual physiological traits are sufficient to consider strain SG 3903T as a new representative of the genus Haloanaerobacter although the DNA–DNA homology between our strain and its closest relative in the genus (Haloanaerobacter chitinovorans) was only 67%.

According to these unusual physiological features, we propose Haloanaerobacter strain SG 3903T as the type strain of a new species with the name Haloanaerobacter salinarius sp. nov.

Emended description of the genus Haloanaerobacter

Haloanaerobacter gen. emend.: full description is by Liaw & Mah (1992), with additional features: some
Haloanaerobic acid subsp. saccharolyticum DSM 6643^T
Haloanaerobic acid subsp. senegalense DSM 7379^T
Haloanaerobic acid acetoethyllicum DSM 3532^T

Fig. 5. Dendrogram based on the distance matrix showing genetic relatedness between *Haloanaerobic acid* strain SG 3903^T and related species or genera of the halophilic fermentative bacteria. The 16S rDNA sequence of *Megasphaera elsdenii* was used as an outgroup to root the tree. Bar, 5 nucleotide substitutions per 100 nucleotides.

<table>
<thead>
<tr>
<th>Character</th>
<th>H. salinarius SG 3903<sup>T</sup></th>
<th>H. chitinovorans OGC 229<sup>T</sup></th>
<th>H. lacunaris DSM 6640<sup>T</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>Long flexible rods</td>
<td>Long flexible rods</td>
<td>Short to long flexible rods</td>
</tr>
<tr>
<td>Cell size (μm)</td>
<td>0·3–0·4 x 5–8</td>
<td>0·5 x 1·4–8</td>
<td>0·7–1 x 0·5–6</td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flagella</td>
<td>Peritrichous</td>
<td>Peritrichous</td>
<td>Peritrichous</td>
</tr>
<tr>
<td>G + C content (mol %)</td>
<td>31·6 (HPLC)</td>
<td>34·8 (Bd)</td>
<td>32·4 (T<sub>m</sub>)</td>
</tr>
<tr>
<td>NaCl range (%)</td>
<td>5–30</td>
<td>3–30</td>
<td>10–30</td>
</tr>
<tr>
<td>Optimum [NaCl] (%)</td>
<td>14–15</td>
<td>12–18</td>
<td>15–18</td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>10–50</td>
<td>23–50</td>
<td>5–52</td>
</tr>
<tr>
<td>Temperature optimum (°C)</td>
<td>45</td>
<td>30–45</td>
<td>35–40</td>
</tr>
<tr>
<td>pH range</td>
<td>6–8</td>
<td>ND</td>
<td>6–8</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>7·4–7·8</td>
<td>7</td>
<td>6·5–7</td>
</tr>
<tr>
<td>Doubling time (h)</td>
<td>12</td>
<td>2·4</td>
<td>2·9–4·5</td>
</tr>
<tr>
<td>Carbohydrates utilized</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chitin degradation</td>
<td>–</td>
<td>+ / –</td>
<td>–</td>
</tr>
<tr>
<td>Amino-acid utilized</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Stickland reaction:</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Glycine-betaine + serine</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Glycine-betaine + H<sub>2</sub></td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>End products of glucose fermentation</td>
<td>H<sub>2</sub>, CO<sub>2</sub>, acetate, lactate, propionate, formate, ethanol</td>
<td>H<sub>2</sub>, CO<sub>2</sub>, acetate, isobutyrate</td>
<td>H<sub>2</sub>, CO<sub>2</sub>, acetate, ethanol</td>
</tr>
</tbody>
</table>

+, Positive test result; −, negative test result; + / −, some strains with positive test; ND, not determined.
strains are able to use amino acids in Stickland reactions or with hydrogen as electron donor. Type species: *Haloanaerobacter chitinovorans*.

Description of Haloanaerobacter salinarius sp. nov.

Haloanaerobacter salinarius (sa.li.na’ri.us. L. adj. *salinarius* pertaining to salinae saltterns, salt-works).

Cells are Gram-negative, colourless, non-sporulating rods, motile by peritrichous flagella; the cells are long, flexible, 0.3–0.4 μm width and 5–8 μm length, in young cultures; short degenerate cells and spheroplasts in old cultures. Surface colonies are circular, translucent, glossy, slightly yellow with entire edges. Colony diameters range from 1 to 2 mm. Agar-embedded colonies are opaque. Obligately halophilic. Growth occurs at NaCl concentrations of between 5 and 30%; optimal growth at 14–15%. The temperature range for growth is 10 to 50 °C with an optimal growth at 45 °C. The pH range is 5.5–8.5 with the optimum for growth at pH 7.4–7.8. Cells are susceptible to chloramphenicol and erythromycin, and are resistant to anisomycin, kanamycin, tetracycline and Na-taurocholate. Obligately anaerobic fermentative; catalase- and oxidase-negative. Glucose, fructose, galactose, mannose, trehalose, sucrose, maltose, raffinose, cellobiose, glucosamine, N-acetylglucosamine and mannitol are fermented. The bacteria use glycine-betaine as oxidant in the Stickland reaction which is reductively cleaved into trimethylamine and acetate with hydrogen or serine as electron donors. The major glucose fermentation products are ethanol, propionate, acetate, formate, CO₂ and H₂. The G+C content of the DNA is 31.6 mol% (HPLC). Habitat: anoxic organic sediments from solar salterns. Type strain: strain SG 3903T, isolated from salt ponds in salterns of Salin-de-Giraud (Camargue, France) and deposited with the DSMZ, number DSM 12146T and the ATCC, number ATCC 170559T. 16S rRNA sequence has been deposited in the EMBL Database under the accession number Y14212.

ACKNOWLEDGEMENTS

This work was partly supported by a grant of the French Ministry of Education and Research (MESR, ACC-SV7). The authors thank the ‘Compagnie des Salins-de-Giraud’ for its authorization to sample and work in the salterns. R. Baulaigue is acknowledged for her technical assistance.

REFERENCES

Ihmoff, J. F. & Suling, J. (1996). The phylogenetic relationship among *Ectothiorhodospiraceae*: a re-evaluation of their tax-
onomy on the basis of 16S rDNA analyses. *Arch Microbiol* 165, 106–113.

International Journal of Systematic Bacteriology 49