The yeast genus *Starmerella* gen. nov. and *Starmerella bombicola* sp. nov., the teleomorph of *Candida bombicola* (Spencer, Gorin & Tullock) Meyer & Yarrow

Carlos A. Rosa and Marc-André Lachance

Author for correspondence: Marc-André Lachance. Tel: +1 519 661 3752. Fax: +1 519 661 3935.
c-mail: lachance@julian.uwo.ca

Seven strains of a heterothallic haploid yeast species were isolated from flowers of *Calystegia sepium* (hedge bindweed, Convolvulaceae) and associated sap beetles of the genus *Conotelus*. Conjugation was observed between some of the isolates and the type strain of *Candida bombicola*, resulting in evanescent asci with one ascospore with a convoluted surface. The sequences of the D1/D2 variable domain of the large subunit of the rDNAs of three strains differed by only one or two bases from that of the type strain. The new genus *Starmerella*, with the single species *Starmerella bombicola*, is proposed to accommodate the teleomorph of *C. bombicola*. The designated isotype is strain UW0(PS)97-118 (h-; CBS 8451).

Keywords: *Candida bombicola*, teleomorph, *Starmerella*, rDNA

METHODS

Yeast isolation and identification. Yeasts were isolated from flowers of the hedge bindweed *Calystegia sepium*, and an associated nitidulid beetle of the genus *Conotelus*. The collections were made in July 1997 on the campus of the University of Western Ontario, London, Ontario, Canada, and in a suburb of Syracuse, NY, USA. The nectary region of flowers was scraped gently with a sterile loop and streak-inoculated onto acidified YM agar (1% glucose, 0.5% peptone, 0.3% malt extract, 0.3% yeast extract, 2% agar, acidified with HCl to pH 3.7). Nitidulid beetles were allowed to walk in plates of the same medium for 30–60 min before being removed. Yeasts were purified and characterized by the standard methods of van der Walt & Yarrow (1984) with a few additional tests (Lachance et al., 1988). Identities were verified in the keys of Kreger-van Rij (1984) and Barnett et al. (1990). Sexual cross-reactivity was evaluated by mixing pairs of actively growing cultures on GY agar (1% glucose, 0.01% yeast extract, 2% agar).

Microscopy. Phase-contrast microscopy using a Leitz Ortholux microscope was performed on fresh cells spread over a thin agar slab. Images were recorded on Polaroid type 55 film. For scanning electron microscopy, material from a 2-d-old mixed culture of compatible mating types on GY agar was suspended in sterile water and deposited over a Nuclepore membrane (0.45 μm) on agar. This material was fixed in 2.5% glutaraldehyde in 0.3 M cacodylate buffer, pH 7.0, for at least 15 min, rinsed twice in cacodylate buffer, and dehydrated for 15 min in 2,2-dimethoxypropane lightly acidified with HCl. The material was critical point dried, then coated with gold and observed at an accelerating voltage of 20 keV. Micrographs were recorded on Polaroid type 100 film. Yeast isolation and identification. Yeasts were isolated from flowers of the hedge bindweed *Calystegia sepium*, and an associated nitidulid beetle of the genus *Conotelus*. The collections were made in July 1997 on the campus of the University of Western Ontario, London, Ontario, Canada, and in a suburb of Syracuse, NY, USA. The nectary region of flowers was scraped gently with a sterile loop and streak-inoculated onto acidified YM agar (1% glucose, 0.5% peptone, 0.3% malt extract, 0.3% yeast extract, 2% agar, acidified with HCl to pH 3.7). Nitidulid beetles were allowed to walk in plates of the same medium for 30–60 min before being removed. Yeasts were purified and characterized by the standard methods of van der Walt & Yarrow (1984) with a few additional tests (Lachance et al., 1988). Identities were verified in the keys of Kreger-van Rij (1984) and Barnett et al. (1990). Sexual cross-reactivity was evaluated by mixing pairs of actively growing cultures on GY agar (1% glucose, 0.01% yeast extract, 2% agar).

Microscopy. Phase-contrast microscopy using a Leitz Ortholux microscope was performed on fresh cells spread over a thin agar slab. Images were recorded on Polaroid type 55 film. For scanning electron microscopy, material from a 2-d-old mixed culture of compatible mating types on GY agar was suspended in sterile water and deposited over a Nuclepore membrane (0.45 μm) on agar. This material was fixed in 2.5% glutaraldehyde in 0.3 M cacodylate buffer, pH 7.0, for at least 15 min, rinsed twice in cacodylate buffer, and dehydrated for 15 min in 2,2-dimethoxypropane lightly acidified with HCl. The material was critical point dried, then coated with gold and observed at an accelerating voltage of 20 keV. Micrographs were recorded on Polaroid type 100 film.
sputter-coated with gold for 5 min, and observed with a Hitachi S4500 Field Emission scanning electron microscope (Surface Science Western). Images were recorded electronically.

Electrophoretic karyotyping. Preparations of intact chromosomes were made by the method of Gardner et al. (1993), which does not require wall lytic enzymes. Karyotypes were obtained using contour-clamped homogeneous electric field electrophoresis (Bio-Rad CHEF DR1). Electrophoresis was carried out in a 0.8% agarose gel in 1 x TBE buffer under the following conditions: 20 h at 120 V with linear ramping of 100-200 s, 25 h at 110 V with linear ramping of 450-600 s and 24 h at 100 V with linear ramping of 800-900 s.

rDNA sequence analysis. DNA was extracted according to Lachance (1990). The D1 and D2 domains of the large-subunit rDNA were amplified using primers NL1 (5'-GCATATCAATAAGCGGAGGAAAG) and NL4 (5'-GGTCCGTGTTTCAAGACGG) (O'Donnell, 1993). PCR amplification was conducted following the instructions provided by the supplier of Taq polymerase (Boehringer Mannheim), in the presence of 1.5 mM MgCl₂, in a Perkin Elmer System 2400 cycler. The mixture was denatured for 2 min at 95 °C, and then subjected to 35 cycles at 95 °C for 15 s, 53.7 °C for 25 s and 72 °C for 30 s, with a final extension of 5 min at 72 °C. The amplified DNA was concentrated and cleaned by ultrafiltration in MicroCon 100 concentrators (Amicon) and sequenced in an ABI sequencer at the John P. Robarts Research Institute, London, Ontario. The sequences were edited with the program DNAMAN, version 3.2 (Lynnon BioSoft) and compared with the sequences in GenBank.

RESULTS AND DISCUSSION

Generic assignment, phylogeny and ecology

Seven yeast strains were isolated from bindweed flowers and associated sap beetles (Table 1). Crosses between compatible mating types gave rise to ascis containing one spheroidal ascospore with a convoluted wall and a membranous basal ledge (Fig. 1). The strains were haploid and had two mating types. Although these characteristics suggested an affinity with the genus *Wickerhamiella*, the large-subunit rDNA sequences were similar to that of *C. bombicola* (GenBank U45705; Kurtzman & Robnett, 1997). For this reason, the strains were crossed with the type strain of *C. bombicola*. Strains of one mating type (h⁻) conjugated with the type strain and gave rise to ascis and ascospores, confirming that they represent the same biological species. A single substitution was found between the sequences of two London strains and the type strain of *C. bombicola*. The Syracuse isolate differed by two substitutions from the others. These differences were not correlated with differences in mating intensity, but the nutritional profile of the Syracuse strain exhibited some variation compared to the others, as specified below. The sequence variation is consistent with the observation, by Kurtzman & Robnett (1997), that members of a single biological species of yeast show no more than two nucleotide substitutions in the D1/D2 domains. The electrophoretotypes of the type strain of *C. bombicola* and three strains from bindweeds were invariant (Fig. 2). Each apparently has two large chromosomes.

The new genus *Starmerella* is proposed to accommodate the sexual stage of *C. bombicola* because this species is not closely related to any known ascosporagenous yeast genus (Kurtzman & Robnett, 1997, Fig. 2). *C. bombicola* forms a cohesive clade with *Candida etchellsii*, *Candida apicola*, *Candida bombi*, *Candida floribunda*, *Candida stellata* and *Candida lactis-condensi*. A sister clade comprises five other *Candida* species. These yeasts may in the future be shown to be haploid mating types of other *Starmerella* species. Interestingly, most were isolated from insects associated with flowers. Physiologically similar, most yeasts in the *Starmerella clade* are fermentative and utilize few carbon compounds. All are osmotolerant. This indicates a specialization towards a common niche, and a possible association with nectar-feeding insects as their principal habitat.

Latin diagnosis of the genus *Starmerella* gen. nov.

Multiplicatio vegetativa gemmatione multilaterali. *Cellulae ovoidae ad ellipsoidae.* *Pseudomycecum et mycellum verum nullum.* *Asci gemini.* *Ascosporae singulae globosae,* cum ora, parietibus asperibus, ad maturitatem ex summis ascis liberantur et inter se agglutinant.* *Fermentatio fieri potest.* *Ad Saccharomyctaceae pertinens.* *Species typica:* *Starmerella bombicola* Rosa & Lachance sp. nov.

Description of the genus *Starmerella* gen. nov.

Starmerella (Star.mer.el’la. L. nom. f. n. *Starmerella* named in honour of William T. Starmer, in recognition of his major contributions to the ecology and evolution of yeasts associated with plants and insects).

The genus belongs to the family Saccharomyctaceae. Vegetative reproduction is by multilateral budding. Vegetative cells are ovoid to ellipsoidal. Asci are conjugated and form one spheroidal ascospore with a convoluted surface and a membranous basal ledge. Asci are evanescent and the ascospores are released terminally and tend to agglutinate. *Pseudomyceum* or true mycelia are not formed. The single species is fermentative. Type species: *Starmerella bombicola* Rosa & Lachance sp. nov.

Latin diagnosis of *Starmerella bombicola* Rosa & Lachance sp. nov.

In medio liquido post dies tres cellulae singulæ aut binae; cellulae ovoidae (1·2 x 2·4 μm). *Post unum mensem annulus et sedimentum formantur.* *Cultura in agaro malti post dies 14 (17 °C) parva, convexa, glabra, candida et butyrosa.* *In agaro fajraneae Zea mays post dies 14 mycelium nec pseudomyceum non formatur.* Post dies unus, cellulae stirpum interfertilium mixtaram in agaro glucosi et extracti levidinis tubi junctionis et asci...
Table 1. List of strains of Starmerella bombicola used in this study

<table>
<thead>
<tr>
<th>Strain no.*</th>
<th>Host</th>
<th>Locality</th>
<th>Mating type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS 6009' (NRRL-Y-17069')</td>
<td>Bombus sp.</td>
<td>Pincher Creek, Alberta, Canada</td>
<td>h'</td>
</tr>
<tr>
<td>UWO/PS/97-105</td>
<td>Conotetes sp.</td>
<td>University of Western Ontario, Canada</td>
<td>h'</td>
</tr>
<tr>
<td>UWO/PS/97-107</td>
<td>Conotetes sp.</td>
<td>University of Western Ontario, Canada</td>
<td>h'</td>
</tr>
<tr>
<td>UWO/PS/97-112</td>
<td>Conotetes sp.</td>
<td>University of Western Ontario, Canada</td>
<td>h'</td>
</tr>
<tr>
<td>UWO/PS/97-114</td>
<td>Callystegia sepium</td>
<td>University of Western Ontario, Canada</td>
<td>h'</td>
</tr>
<tr>
<td>UWO/PS/97-118' (CBS 8451')</td>
<td>Callystegia sepium</td>
<td>University of Western Ontario, Canada</td>
<td>h'</td>
</tr>
<tr>
<td>UWO/PS/97-119</td>
<td>Callystegia sepium</td>
<td>University of Western Ontario, Canada</td>
<td>h'</td>
</tr>
<tr>
<td>UWO/PS/97-211.1</td>
<td>Callystegia sepium</td>
<td>Syracuse, NY, USA</td>
<td>h'</td>
</tr>
</tbody>
</table>

* T. Holotype; I. designated isotype.

Fig. 1. (a) Phase-contrast micrographs of maturing ascii of S. bombicola showing conjugated cells and an empty ascus. (b-d) Scanning electron micrographs of S. bombicola showing ascospores with agglutination mucilage and membranous ledge (c) and a convoluted surface (d). Bar, 1 μm.
ring are formed after a month. On malt agar after 2 weeks at 17 °C, the colonies are small, convex and white, with an entire edge. In Dalmat plates after 2 weeks on cornmeal agar, pseudomyceila or true myceila are not formed. After 1 d on GY agar, mixed cells of compatible mating types fuse in pairs. After 3 d, conjugated asci form one spheroidal ascospore with a convoluted wall and a membranous basal ledge. The ascospores are released terminally and have a strong tendency to agglutinate. Glucose and sucrose are fermented. Fermentation of raffinose is variable. Sucrose (sometimes weak), galactose (delayed and variable), raffinose (variable), l-sorbitose (sometimes weak or slow), ethanol (weak or slow), glycerol (often slow), mannitol, glucitol (often slow), succinic acid (variable), citric acid (variable), gluconic acid (variable) and glucono-δ-lactone (often slow or weak) are assimilated. Inulin, melibiose, lactose, trehalose, maltose, melezitose, methyl α-D-glucoside, starch, cellobiose, salicin, L-rhamnose, xylose, L-arabinose, D-arabinose, methanol, 1-propanol, 2-propanol, 1-butanol, erythritol, ribitol, xylitol, galactitol, myo-inositol, lactic acid, malic acid (sometimes weak), 2-keto-2,3-butanediol, glucose, mannitol, glucitol (often slow), succinic acid, ethanol acetate and hexadecane are not assimilated. Ethylamine, lysine and cadaverine are assimilated as nitrogen sources, but not nitrate and nitrite. Growth in vitamin-free medium is negative. Growth in amino-acid-free medium is positive. Growth at 30 °C is positive; at 37 °C it is negative. Gelatin liquefaction and casein hydrolysis are negative. Lipolytic activity on Tween 80 agar is negative. Acid formation on chalk agar is negative. Growth in YM agar with 5 % NaCl is positive or weak; with 10 % NaCl growth is negative. Growth in 50 % glucose/yeast extract agar is slow. Starch-like compounds are not produced. Growth in the presence of 10 mg cycloheximide l-1 is positive; with 100 µg ml-1 it is negative. Growth in the presence of 8 µg digitonin ml-1 at 25 °C is negative. Dazonium Blue B reaction is negative. G + C content: 49.8 mol % (Stenderup et al., 1972). Ubiquinone system: Q-9 (Lee et al., 1993). The habitat is flowers and insects. The type strain is CBS 6009T, the type strain of Candida bombicola (Spencer et al., 1970). Its mating type is designated arbitrarily as h+. The isolate is strain UWO(PS)97-118T (h+; CBS 8451T) isolated from hedge bindweed (Calystegia sepium).

Variation

Some of the physiological properties determined for our isolates are at variance with those given in the literature. Raffinose assimilation was negative. The original description of Torulopsis bombicola (Spencer et al., 1970) reported it as positive, Barnett et al. (1990) reported it as delayed and Meyer et al. (1984) reported it as variable. Acid production was reported as positive in the original description, while it was negative in Barnett et al. (1990) and weak in our study. Barnett et al. (1990) reported a variable response on ribose and a delayed response on 100 mg cycloheximide l-1, both of...
which are at variance with other sources, which report these as negative.

As noted earlier, the Syracuse strain (97-211.1) differed from others in the intensity of many growth responses. Fermentation and the assimilation of galactose, sorbose, glucitol and succinic acid were more intense, whereas the utilization of sucrose, citric acid, malic acid, gluconic acid and glucono-δ-lactone as well as NaCl tolerance were less intense. Such intrinsic differences within the species may account for the variability observed when contrasting various reports.

ACKNOWLEDGEMENTS

We acknowledge financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq of Brazil (Postdoctoral Fellowship to C.A.R.) and the Natural Science and Engineering Research Council of Canada (Research Grant to M.-A.L.). We also thank C. P. Kurtzman for the gift of the type strain of *Candida hor.l-ltic*ar, and J. M. Bowles for plant identification.

REFERENCES

