Assignmet of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium

Isao Yumoto, Kosei Kawasaki, Hideaki Iwata, Hidetoshi Matsuyama and Hidetoshi Okuyama

Author for correspondence: Isao Yumoto. Tel: +81 11 8578925. Fax: +81 11 8578900. e-mail: yumoto@hmiri.go.jp

A psychrophilic bacterium, previously described as Vibrio sp. strain ABE-1, has been re-assigned by phenotypic characterization, chemotaxonomic analysis and 16s rRNA phylogenetic analysis. The organism was curved rods and it could reduce nitrate to nitrite and hydrolyse gelatin and DNA, but not chitin. NaCl was required for growth. This strain was susceptible to the vibriostatic compound O/129. The major isoprenoid quinone was ubiquinone-8 and the DNA G+C content was 39.4 mol%. The whole-cell fatty acids comprised saturated and monounsaturated fatty acids with 10-18 C atoms; saturated and monounsaturated C16 fatty acids were predominant. Strain ABE-1 contained the unique trans-unsaturated fatty acid, 9-trans-hexadecenoic acid. Although strain ABE-1T has been identified as a Vibrio species, the strain did not ferment glucose. Phylogenetic analysis based on 16s rRNA sequencing indicated that strain ABE-1T was more closely related to Colwellia species than to Vibrio species. However, strain ABE-1T differed from other reported Colwellia species in terms of phylogenetic position, some phenotypic characteristics, chemotaxonomic analysis and relatedness by DNA-DNA hybridization. Accordingly, the name Colwellia maris is proposed. The type strain is ABE-1T (= JCM 10085T).

Keywords: Colwellia maris sp. nov., psychrophilic bacterium, Vibrio

INTRODUCTION

There have been many reports about micro-organisms that can grow in extreme environments such as low and high temperatures, high pressure, alkaline and acidic conditions, and high chemical concentrations (Horikoshi & Grant, 1991). Even though the temperature is below 10 °C in almost 80% of the Earth, little is known about the taxonomic diversity and physiology of micro-organisms which have adapted to the cold. Morita (1975) defined the psychrophile as having an optimum temperature for growth of about ≤ 15 °C and a maximum temperature for growth of ≤ 20 °C, and the psychrotroph as a cold-tolerant organism, with a maximum growth temperature above 20 °C. Compared with mesophiles, there are not many examples of isolation of psychrophiles. However, several strains have been identified at the species level (Bowman et al., 1997a, b; D’aoust & Kunshner, 1972; Deming et al., 1988; Gounot, 1976; Irgens et al., 1996; Morita & Haight, 1964; Pacha, 1968).

A psychrophilic bacterium, Vibrio sp. ABE-1T, has been isolated previously (Takada et al., 1979). The micro-organism exhibited optimum and maximum temperatures for growth of 15 °C and below 24 °C, respectively. The cellular fatty acids concerned with cold adaptation (Okuyama et al., 1990, 1991), bioenergetic properties as a marine bacterium (Takada et al., 1981, 1989a, 1991), and enzymology as a psychrophile (Ishii et al., 1987, 1993) of the strain have been studied extensively. However, its taxonomic position at the species level remains to be determined.

In this study, phenotypic and chemotaxonomic characteristics and the phylogenetic position of strain ABE-1T have been examined; results showed that the strain should be classified as a new species.
METHODS

Bacterial strains and cultivation. The strain examined was *Vibrio* sp. ABE-1¹ (Takada *et al*., 1979). It was isolated from seawater which was obtained from the Abashiri coast (44°3’ N, 144°16’ E), off the Okhotsuku Sea, in Hokkaido, Japan, in the season when drifting ice from Siberia flowed into the region. The organism was cultivated aerobically in seawater which was obtained from the Abashiri coast (44°3’ N, 144°16’ E), off the Okhotsuku Sea, in Hokkaido, Japan, in the season when drifting ice from Siberia flowed into the region. The organism was cultivated aerobically in

Peptone-water contained the following (per litre distilled water): 8.0 g peptone (Kyokuto), 3.0 g yeast extract (Merck), and 15 g agar (if needed). Herbst’s artificial seawater which was obtained from the Abashiri coast contained the following (per litre distilled water): 30 g NaCl; 0.7 g KCl; 5.3 g MgSO₄·7H₂O; 1.3 g CaSO₄·2H₂O; and 10.8 g MgCl₂·6H₂O. *C. psychrerythraea* ATCC 27364⁴ (type strain) was used as a comparison for the test of metabolism of D-glucose and DNA–DNA hybridization.

The strain was grown at 15 °C on marine agar or broth 2216 (Difco).

Phenotypic characterization. For phenotypic characterization, PYSE medium was used as the basal medium, the culture was incubated at 15 °C for 2 weeks, and the experiment was performed more than twice unless otherwise stated. Morphological, physiological and biochemical tests were performed as described in Cowan & Steel’s manual (Barrow & Seltham, 1993). The metabolism of carbohydrates was tested by the method of Leifson (1963). The experiment was repeated five times. The result was checked daily for 1 month after inoculation. Alginate activity was determined after a preparation was overlaid with ethanol following 10 d incubation. Sensitivity to the vibriostatic agent O/129 (2,4-diamino-6,7-disopropylpteridine) was determined after 1 week cultivation on PYSE agar plates using diagnostic disks (10 and 150 μg. Oxoid). The utilization of the substrate as the sole carbon and energy source was performed with USTM medium (pH 7.5) containing 0.2% substrate, 50 mM Tris, 0.33 mM K₂HPO₄, 0.1 mM FeSO₄·7H₂O in 1150% Herbst’s artificial seawater (described above).

Electron microscopy. Cells which were grown on PYSE agar medium were suspended in physiological saline. A small drop of the suspension was placed on a carbon-coated copper grid and negatively stained with 1% phosphotungstic acid for observation with a transmission electron microscope (Hitachi H-800).

Analysis of isoprenoid quinones. Isoprenoid quinones were extracted by treating 500 mg freeze-dried cells with 150 ml chloroform/methanol (2:1, v/v) for 2 h in a reciprocal shaker (120 strokes per min) at room temperature. The extracted solution was concentrated and transferred by 100 ml. The obtained isoprenoid quinones were analysed by HPLC equipped with a Novapak C18 column (Waters) at room temperature. The HPLC system was as described above. An equimolar mixture of four deoxyribonucleotides (Yasama Shoya) was used as the standard.

Levels of DNA relatedness were determined fluorometrically by the method of Ezaki *et al.* (1989) using photobiotin-labelled DNA probes and microplates.

Amplification of 16S rRNA gene and sequencing. The 16S rRNA gene was amplified by PCR. The sequences of the primers used for amplification were 5’ AGAGTTTGATCCTGCT 3’ and 5’ AAGGAGTTGATCCGCGCA 3’, corresponding to positions 8–24 and 1528–1544, respectively, in the 16S RNA sequence of *Escherichia coli* (Brosius *et al*., 1978). The 1.5 kb PCR product was directly sequenced by the dideoxynucleotide chain-termination method with a DNA sequencer (model 377; Applied Biosystems). Multiple alignments of the sequence were performed, nucleotide substitution rates (<i>K</i> _{ev} value) were calculated, and a neighbour-joining phylogenetic tree (Kimura, 1980; Saitou & Nei, 1987) was constructed using the CLUSTAL w program (Thompson *et al*., 1994). The similarity values of the sequences were calculated using the GENETYX computer program (Software Development).

Nucleotide sequence accession numbers. The DDBJ/EMBL/GenBank accession numbers for the sequences used as reference sequences are as follows: *C. psychrerythraea* (DeLong *et al*., 1993), L10939: small subunit rRNA gene cloned from macroaggregate of the sea (AGG53) (DeLong *et al*., 1993), L10950: *Pseudoalteromonas haloplanktis* subsp. haloplanktis ATCC 14393⁹, X67024; *Shewanella haneidae* CIP 103207⁹, X82132; *Photobacterium angustum* ATCC 25915⁹, X74685; *Vibrio cholerae* ATCC 14035⁹, X74695; *Alteromonas macleodii* IAM 12920⁹, X82145; *Aeromonas hydrophila* ATCC 35654, X74676; *Escherichia coli* (Carbon *et al*., 1979), J01859; *Moritella marinus* NCIMB 1144⁹, X82142; *Marinomonas vaga* ATCC 27119, X67025.

RESULTS

Morphology

When the bacterium was grown at 15 °C in PYSE medium, the cells appeared as single motile curved rods of 0.6–0.8 by 2.0–4.0 μm in size. Flagella-staining light microscopic observation and transmission electron micrograph (Fig. 1) revealed a single polar flagellum. Spore formation was absent and Gram-staining was negative.

Phenotypic characteristics

Strain ABE-1¹ exhibited the following physiological and biochemical characteristics. Oxidase and catalase activities were positive. Acids were produced from D-glucose under aerobic conditions; no acids, however,
bacterium, strain S51-W(gv)1 (Gosink & Staley, 1995), isolated from Antarctica. However, this strain has not yet been identified at the species level. Strain ABE-1T also clustered with amplified 16S rRNAs of AGG53 (DeLong et al., 1993) and PVB OTU12 (Moyer et al., 1995) (data not shown) which were isolated from sea macroaggregate and a hydrothermal vent system, respectively. The 16S rRNA sequence of strain ABE-1T exhibited high similarity to that of AGG53 (95.3%) and PVB OTU12 (92.9%).

DNA base composition and DNA–DNA hybridization

The DNA G+C content of strain ABE-1T was 39.4 mol%, a value that falls within the definition range of the genera Colwellia and Vibrio.

According to 16S rRNA sequence analysis, strain ABE-1T was closely related to the genus Colwellia. Only two species belonging to genus Colwellia, C. psychrerythraea and C. hadaliensis, have previously been recognized. However, the type strain of C. hadaliensis is difficult to obtain. Therefore, the level of DNA relatedness between strain ABE-1T and only obtainable species, C. psychrerythraea ATCC 27364T, was determined; this value was 22%.

DISCUSSION

Phenotypic characterization and chemotaxonomic analysis of strain ABE-1T in this study were comparable to previous results (Okuyama et al., 1990; Takada et al., 1979, 1989b), except for the casein hydrolysis and DNA G+C content results. Strain ABE-1T was tentatively identified as belonging to the genus Vibrio, due to the characteristic phenotypic similarities to Vibrio marinus, although it has been reported as being negative for fermentation of D-glucose (Takada et al., 1979). In the present study, in addition to the phenotypic characteristics, the almost complete sequence of the 16S rRNA was determined. Phylogenetic analysis based on the 16S rRNA sequence revealed that strain ABE-1T was more closely related to Colwellia species than to Vibrio species (Fig. 2). These results suggest that strain ABE-1T should be classified as Colwellia rather than Vibrio.

Although phylogenetic analysis has revealed that the genera Colwellia and Vibrio are very different (Fig. 2) and strain ABE-1T and C. psychrerythraea do not ferment D-glucose, Colwellia species have been described in the genus Vibrio in terms of phenotypic characterization (Holt et al., 1994). Actually, the Colwellia strains, C. psychrerythraea and C. hadaliensis, have been reported as facultatively anaerobic bacteria (D’Aoust & Kunshner, 1972; Deming et al., 1988), but in this study, generally (four-fifths of trial), C. psychrerythraea did not produce acids from D-glucose under either aerobic or anaerobic conditions during 1 month. However, acids were occasionally produced under aerobic conditions (one-fifth of trial). These results suggested that phenotypic characteristics of the genus Colwellia may also be totally different from...
from four other genera of halophilic marine microorganisms on the basis of phenotypic and chemotaxonomic characteristics as follows: genera *Vibrio*, *Photobacterium* and *Moritella* are facultatively anaerobic; and the genus *Halomonas* exhibits a G+C content of DNA of 52–68 mol% and the major isoprenoid quinone detected is Q-9. However, it is very difficult to differentiate between the genus *Colwellia* and the genera *Alteromonas*, *Pseudoalteromonas*, *Shewanella* and *Marinomonas* using these characteristics. In some cases, it is possible to differentiate between strain ABE-lT, which belongs to the genus *Colwellia*, and the cold-adapted strains that belong to these other genera on the basis of phenotypic and chemotaxonomic characteristics. For example, recently, *Pseudoalteromonas antarctica* was isolated from an Antarctic coastal environment (Bozal et al., 1997). Strain ABE-lT was differentiated from *P. antarctica* in terms of cell shape, growth temperature range (4–30 °C), utilization and metabolism of substrates, nitrate reduction and starch hydrolysis.

The available data of phenotypic characteristics of the already known *Colwellia* species, *C. psychrerythraea* and *C. hadalensis*, are limited (D’aoust et al., 1972; Deming et al., 1988). Strain ABE-lT can be differentiated from the other two reported *Colwellia* species on the basis of phenotypic characteristics and DNA G+C content as follows: *C. psychrerythraea* produces red pigment, hydrolyses starch and has a growth temperature range of 0–19 °C; *C. hadalensis* hydrolyses chitin, is obligately barophilic and has a DNA G+C content of 45.7 mol%. The similarity value between strain ABE-lT and *C. psychrerythraea* was 92.9% on the basis of 16S rRNA sequencing, and the DNA–DNA relatedness value between strain ABE-lT and *C. psychrerythraea* was 22%. These values also indicate that these two strains do not belong to the same species.

Colwellia-like gas vacuolate bacterium strain S51-W(gv)1 (Gosink & Staley, 1995), from the Antarctic sea, exhibits a high 16S rRNA sequence similarity value with strain ABE-lT (97.8%). Strain ABE-lT can

Table 1. Characteristics of genus *Colwellia* and genera that commonly occur in marine habitats

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺ requirement for growth</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermentation of glucose</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Respiration</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major isoprenoid quinone(s)</td>
<td>Q-8</td>
<td>MK-8, Q-8, Q-9</td>
<td>ND</td>
<td>ND</td>
<td>Q-8</td>
<td>Q-8</td>
<td>MK-7, Q-7, Q-8</td>
<td>Q-9</td>
<td>Q-8</td>
</tr>
<tr>
<td>Marine inhabitant</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA G+C (mol%)</td>
<td>39-46</td>
<td>38-51</td>
<td>40-44</td>
<td>42-2</td>
<td>44-47</td>
<td>37-50</td>
<td>44-47</td>
<td>52-68</td>
<td>44-48</td>
</tr>
</tbody>
</table>
be differentiated from strain S51-W(gv)1 in that strain S51-W(gv)1 does not contain a unique trans-unsaturated fatty acid in the membrane lipid (Gosink & Staley, 1995). Furthermore, strain ABE-1T is not a gas vacuolate bacterium.

DeLong et al. (1997) studied the evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. All the strains used in their experiments were affiliated with one of five genera: *Colwellia*, *Shewanella*, *Photobacterium*, *Mortella* and a new group. Bowman et al. (1997c) estimated the diversity of psychrophilic bacteria from Antarctic sea ice. Their results revealed that these psychrophilic strains contained both *Colwellia* species and a closely related group. These results indicated that the genus *Colwellia* is well-distributed in cold sea environments.

DeLong et al. (1993) and Moyer et al. (1995) cloned *Colwellia*-like rRNA from isolates from Santa Barbara, California, USA, in the spring season (AGG53) and the hydrothermal vent system (PVB OTU12), respectively. These results suggested that the genus *Colwellia* consists not only of psychrophiles, but also of mesophiles or thermophiles. However, further studies are necessary to establish this. Interestingly, considering only isolated strains, there have been no reports of the isolation of *Colwellia* species from any environments other than cold ones.

On the basis of the above results, the name *Colwellia maris* sp. nov. is proposed and the type strain is designated ABE-1T. A description of the new species is given below.

Description of *Colwellia maris* sp. nov.

Colwellia maris sp. nov. (maris. L. gen. n. *maris* of the sea).

Cells are curved rods (0.6-1.0 by 2-4 µm), Gram-negative and motile by means of a single polar flagellum. Catalase and oxidase reactions are positive. Acids are produced from D-glucose under aerobic conditions; however, no acids are produced anaerobically. No acids are produced from L-arabinose, D-fructose, maltose, D-mannose, melibiose and sucrose either aerobically or anaerobically. No growth is observed in the absence of NaCl in the culture medium, but growth occurs in media supplemented with 3% and 4% NaCl and not in media with salinity higher than 6.5% NaCl. Susceptibility to virobiorastic compound O/129 (10 and 150 µg) is observed. Growth occurs at 0-22 °C, but not at temperatures higher than 25 °C. Voges-Proskauer test, methyl red test and indole production are negative, but reduction of nitrate is positive. Hydrolyses gelatin, DNA and Tweens 20, 40, 60 and 80, but does not hydrolyse casein, chitin, starch and alginic acid. Utilizes D-glucose as a sole carbon and energy source for growth, but not D-mannose, raffinose, D-xylose, L-arabinose, D-fructose, glycerol, lactose, maltose, melibiose and sucrose. The major isoprenoid quinone is Q-8. The whole-cell fatty acids contain saturated and monounsaturated fatty acids with 10-18 C atoms; saturated and mono-unsaturated C₁₆ fatty acids are predominant in cells grown at 15 °C. The strain contains a unique trans-unsaturated fatty acid (9-trans-hexadecenoic acid, C₁₆:1t). The DNA G+C content is 39-4 mol% (determined by HPLC). The type strain of *Colwellia maris* is ABE-1T (= JCM 10085T).

ACKNOWLEDGEMENTS

The authors would like to thank Dr Y. Nodasaka (Hokkaido University) for his help with transmission electron microscopic observation and Dr K.-i. Suzuki (Japan Collection of Microorganisms, Institute of Physical and Chemical Research) for critically reading the manuscript.

REFERENCES

I. Yumoto and others

