Desulfurobacterium thermolithotrophum
gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent

A thermophilic, anaerobic, strictly autotrophic, sulphur-reducing bacterium, designated BSA\(^T\) (T = type strain), was isolated from a deep-sea hydrothermal chimney sample collected at the mid-Atlantic ridge. Gram-negative cells occurred singly or in pairs as small highly motile rods. Spores were not observed. The temperature range for growth was 40 to 75 °C, with an optimum at 70 °C. The pH range for growth at 70 °C was from 4.4 to 7.5, with an around 6.0. The sea salt concentration range for growth was 15-70 g l\(^{-1}\) with an optimum at 35 g l\(^{-1}\). Elemental sulphur, thiosulphate and sulphite were reduced to hydrogen sulphide. Sulphate and cystine were not reduced. The G+C content of the genomic DNA was 35 mol%. Phylogenetic analyses of the 16S rRNA gene indicated that the strain was a member of the domain Bacteria and formed a branch that was almost equidistant from members of the orders Aquificales and Thermotogales. The new organism possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, it is proposed that this isolate should be described as a member of a novel species of a new genus, Desulfurobacterium gen. nov., of which Desulfurobacterium thermolithotrophum sp. nov. is the type species. The type strain is BSA\(^T\) (= DSM 11699).

Keywords: deep-sea hydrothermal vents, thermophiles, Bacteria, Desulfurobacterium, Desulfurobacterium thermolithotrophum

INTRODUCTION

Most micro-organisms known to thrive in the hottest parts of the deep-sea hydrothermal vent ecosystem are chemolithoautotrophic and chemo-organohetrotrophic anaerobes that fall into the domain Archaea (Prieur et al., 1995; Stetter, 1996). They include hyperthermophilic methanogens, sulphur metabolizers and sulphate reducers. These organisms are not restricted to deep-sea vents, as members of the genera Methanopyrus, Archaeoglobus, Pyrococcus and Thermococcus also occur in shallow marine hydrothermal systems, offshore and/or continental oil reservoirs (Kurr et al., 1991; Stetter et al., 1993; L'Haridon et al., 1995).

Within the domain Bacteria, the majority of marine, thermophilic micro-organisms described within the past decade have been isolated from shallow marine hot springs. They include thermophilic and hyperthermophilic aerobic species, such as Thermus thermophilus, Rhodothermus marinus, Aquifex pyrophilus (Alfredsson et al., 1988; Huber et al., 1992; Manaia et al., 1994), and anaerobic species of the order Thermotogales (Huber & Stetter, 1992). From deep-sea vents, the only anaerobic, heterotrophic, sulphur-
reducing strains that have been isolated belong to the genus *Thermotoga* (Martinsson et al., 1997) and a new species of the genus *Thermosiphon* (Antoine et al., 1997). Because the solubility of oxygen is low in hydrothermal environments, microbiologists have been mainly interested in the study of anaerobic organisms. However, the only other thermophilic bacteria isolated so far from depth are aerobic, heterotrophic strains assigned to the genera *Thermus* and *Bacillus* (Martinsson et al., 1995, 1996). The abundance and distribution of thermophilic microorganisms in deep-sea hydrothermal vent chimneys were recently assessed by a combination of traditional culture-based enrichments of strictly anaerobic thermophiles and whole-cell hybridization of extracted cells with domain- and kingdom-specific fluorescent oligonucleotide probes based on 16S rRNA (Harmsen et al., 1997a). Surprisingly, most of the samples contained equivalent numbers of cells from both domains, and at least four different morphotypes of bacteria could be distinguished. One of the observed morphotypes corresponded to small rod-shaped anaerobic chemolithoautotrophic sulphur reducers (Harmsen et al., 1997a).

In this paper, we describe the isolation and the properties of this novel marine thermophilic organism (strain BSAT) and show that it differs sufficiently from any previously described taxon to place it in a new genus. The name proposed is *Desulfurobacterium thermolithotrophum* gen. nov., sp. nov.

METHODS

Reference strains. *Aquifex pyrophilus* DSM 6858° (= Kol5a°), *Hydrogenobacter thermophilus* DSM 6543° (TK-6°), *Calderobacterium hydrogenophilum* DSM 2913° (= Z-829°), *Thermotoga maritima* DSM 3109° (= MS88°) and *Fervidobacterium nodosum* DSM 5306° (= RT17-B1°) were obtained from the DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany).

Collection of chimney samples. Beehive structures were collected in November and December 1995 from the Snake Pit vent field (23° 22' 118"N, 44° 56' 984"W) on the mid-Atlantic ridge at a depth of 3500 m during the Microsmoke cruise (Harmsen et al., 1997a). Using the port manipulator of the submersible *Nautil*, these chimneys were placed in the submersible insulated basket for the trip to the surface. Once they were transferred on board, subsampling across the sulphide structures was conducted as aseptically as possible. Chimney subsamples were transferred to 50 ml glass vials and flooded with a sterile solution of 3% (w/v) sea salts (Sigma). The vials were then closed tightly with butyl rubber stoppers (Bellco), pressurized with N₂ (100 kPa), reduced with sodium sulphide when required and stored at 4 °C until processing.

Enrichment cultures and purification. Chimney subsamples were used to inoculate medium ASR (see below). Enrichments were performed anaerobically in 50 ml vials according to Balch & Wolfe (1976) and incubated at 65 °C for 2 or 3 d. Positive enrichments were subcultured and purified by streaking onto ASR medium that was supplemented with thiosulphate (20 mM) and polysulphides and solidified with 0.7% (w/v) Phytalg (a gellan gum from Sigma). Plates were incubated in anaerobic jars at 65 °C for 3 d under a H₂–CO₂ atmosphere (80:20; 200 kPa).

Culture medium and conditions. The isolate BSAT was routinely grown in medium ASR, which contained per litre of distilled water: 30 g sea salts, 1 g NH₄Cl, 0.35 g KH₂PO₄, 1.95 g MES, 1 g NaHCO₃, 10 g sulphur, 1 ml trace element mixture (Widdel & Bak, 1992), 1 ml thiamin thiglate solution (Widdel & Bak, 1992), 1 ml vitamin B₁₂ solution (Widdel & Bak, 1992), 1 ml growth-stimulating factors [per 100 ml distilled water: 0.5 g isobutyric acid, 0.5 g valeric acid, 0.5 g 2-methyl-butyric acid, 0.5 g 3-methyl-butyric acid, 0.2 g caproic acid and 0.6 g succinic acid (Pfenning et al., 1981)] and 1 mg resazurin. The pH of the medium was adjusted to 6.2 using 1 M NaOH before autoclaving. H₂–CO₂ (80:20; 200 kPa) was used as the gas phase. Unless indicated otherwise, cultures were incubated at 65 °C and the pH of the medium was readjusted after 1 h incubation. Stock cultures of isolate BSAT were stored in culture medium at 4 °C. For long-term storage, pure cultures were stored at −80 °C in the same medium containing 20% (w/v) glycerol.

Determination of growth. Despite the presence of sulphur in the ASR medium, growth was determined by measuring changes in turbidity at 600 nm by inserting anoxic culture tubes directly into a Spectronic 20D spectrophotometer (Biblock). Direct cell counts were determined using cells stained with acridine orange and counted by epifluorescence microscopy using an ocular grid (Hobbie et al., 1977). All growth experiments were performed in duplicate.

Determination of growth parameters. The influence of the pH on growth was determined in the culture medium with various buffer systems at a concentration of 10 mM, acetate/acetic acid buffer from pH 4 to 5, MES at pH 5.5 and 6.0, PIPES at pH 6.5 and 7.0, HEPEs at pH 7.5, Tris at pH 8 and 8.5. The pH of the medium was adjusted after 1 h incubation at the optimal temperature for growth. To determine the salt requirement, ASR medium was prepared with different dilutions of sea salts, and incubation was performed at the optimal temperature and optimal pH for growth.

Determination of growth requirements. To investigate the ability to use substrates other than H₂, acetate (2 g l⁻¹), formate (5 g l⁻¹), methanol (0.5–5% v/v), monomethylamine (2 g l⁻¹) and Difco yeast extract (2 g l⁻¹) were added to the ASR medium with a N₂–CO₂ gas phase (80:20; 200 kPa). The same compounds at the same concentrations were also tested as possible carbon sources by using H₂ (100%; 200 kPa) as the gas phase. Selected nitrogenous compounds were tested for suitability as nitrogen sources, using ammonium-free mineral medium (Widdel & Bak, 1992) supplemented with sulphur. Nitrogenous compounds were added at 10 mM final concentrations. Electron acceptors were tested in the same medium without Na₂SO₄ and sulphur.

Antibiotic susceptibility. Sensitivity to the antibiotics chloramphenicol, penicillin G, streptomycin and rifampicin (Sigma) was tested at a concentration of 100 μg ml⁻¹. Simultaneous experiments with the bacterium *Thermotoga maritima*, used as a control, were performed to establish the efficiency of the antibiotics at 70 °C.

Determination of catalase. About 100 μl of a 3% (v/v) H₂O₂ solution was dropped onto packed cells from a 20 ml culture.
The presence of catalase was indicated by the development of gas bubbles.

Light and electron microscopy. An Olympus BH-2 microscope equipped with an Olympus OM-2 camera was used routinely to observe and count the bacteria and to obtain photomicrographs. Gram staining was carried out as described by Conn et al. (1957). For negative staining, 20 μl of a bacterial suspension fixed with 2% (w/v) glutaraldehyde was dropped on Formvar/carbon-coated grids (400 mesh) and stained with 4% (w/v) uranyl acetate. Preparation of cells for freeze fracturing and ultrathin sectioning was performed as described previously (Sleytr et al., 1988). Micrographs were taken on a model CM100 electron microscope (Philips) with an acceleration voltage of 80 kV.

H₂S determination. Sulphide determination was carried out according to Cline (1969). Samples for H₂S determination were stabilized as ZnS by combining the samples with an excess of ZnSO₄ in 1 M NaOH (Ingvorsen & Jorgensen, 1979).

Lipid analysis. Dried cells (300 mg) were extracted and analysed by TLC as described by De Rosa & Gambaocra (1994). The total lipid extract was purified by flash chromatography on silica gel and eluted with chloroform–methanol–H₂O (65:25:4, by vol.). The final purification was achieved by TLC developed with chloroform–methanol–H₂O (65:25:4, by vol.). The spots, visualized by iodine vapour, were scraped and eluted by chloroform–methanol (1:1). The compounds were analysed by ¹H- and ¹³C-NMR. The compounds were hydrolysed by alkaline methanolation as reported previously (Soriente et al., 1992). The methanol mixture was analysed by TLC developed with n-hexane–ethyl acetate (96:4, v/v), and the hydrolysis products were detected by exposure to iodine vapour and spraying with 0.1% (w/v) Ce(SO₄)₂. The hydrolysis products were purified by preparative TLC with the solvent system described above. Saturated and unsaturated fatty acids were detected by silver nitrate-impregnated TLC [lo % (w/v) AgNO₃]. The methanol-soluble fraction was analysed by ¹H-NMR and GC-MS.

NMR spectra were recorded on a Bruker AMX 500 (500-13 MHz for ¹H and 125-75 MHz for ¹³C) spectrometer. Chemical shifts are given in ppm (δ) scale; the methanol signal was used as an internal standard (δ 7.26 ¹H; δ 77.0 ¹³C). The spectra were performed in CDCl₃–methanol (1:1) for polar lipids and in CDCl₃ for fatty acid methyl esters (FAME). Distortionless enhancement by polarization transfer (DEPT) experiments were performed according to the methods of Doddrell et al. (1982).

GC-MS runs were obtained using a Hewlett-Packard 5890 series II plus-5989B spectrometer equipped with a HP-5 column with a flow of 45 ml min⁻¹. FAME analyses were performed under the following conditions: initial temperature 120°C (1 min); rate 2 °C min⁻¹; final temperature 250°C.

Isolation of DNA. Genomic DNA of strain BSA was isolated using a modification of the procedure described by Carbonnier & Forterre (1994). The DNA was purified on a caesium chloride gradient (Sambrook et al., 1989), and purity was checked spectrophotometrically.

DNA base composition. The G+C content of the DNA was determined from the melting point according to Marmur & Doty (1962) using Escherichia coli DNA (57 mol % G+C), Clostridium perfringens DNA (26.5 mol % G+C) and Micrococcus luteus DNA (77 mol % G+C) as standards.

PCR amplification and sequencing of the small subunit rDNA. Purified DNA was used in a PCR to amplify the small subunit rDNA gene. To amplify the small subunit rDNA, the forward primer was 5’ < AGAGTTTGATCCTGGCGTCAG < 3’, and the reverse primer was 5’ < GGTACCTGGATCCAGTTT < 3’, corresponding, respectively, to the following positions in the E. coli rRNA sequence (Brosius et al., 1978): 8-27 and 1492-1510. The initial denaturation step consisted of heating the reaction mixture at 95°C for 180 s, and the thermal profile then consisted of 25 cycles of annealing at 52°C for 60 s, extension at 72°C for 90 s and denaturation at 94°C for 30 s. A final extension step was carried out at 72°C for 5 min. The PCR products were analysed on a 1% low-melting-point agarose gel that included a molecular mass standard for quantification of the PCR yield.

PCR products were sequenced with a Thermo Sequenase premixed cycle sequencing kit (Amersham) as recommended by the manufacturer. Sequence reaction mixtures were electrophoresed using a Vistra Systems model 725 DNA sequencer. The forward and reverse primers used to amplify the 16S rDNA genes were also used for sequencing. Internal sequences of the genes were obtained by using a forward primer (5’ < GTGCCAGC(AC)GCCCGCTGAT < 3’) and a reverse primer corresponding to positions 515–534, and a forward primer (5’ < GAACTTAAA(GT)GAA-TTG < 3’) corresponding to positions 906–924 (according to the E. coli numbering).

Phylogenetic analysis of the rDNA genes. The 16S rDNA sequences were aligned manually with the sequences of representatives of related genera. The organisms used in this analysis and their small subunit rDNA sequence accession numbers retrieved from the EMBL sequence database were as follows: Aquifex pyrophilus Kola5a (= DSM 6857), M83548; Hydrogenobacter thermophilus TK-6 (= DSM 6543); Z30214; Calderobacterium hydrogenophilum Z-8299 (= DSM 2913); Z30242; Geotoga subterranea CC-1, L10659; Fervidobacterium nodosum R17-B1, M59177; Thermotoga maritima MS8 (= DSM 3109); M21774; Thermus thermophilus HB8, X07998. The secondary structure was used as a guide to ensure that only homologous regions were compared. Regions with undetermined nucleotides for the sequences available in the EMBL database were not included within these analyses. A total of 1447 nucleotides were sequenced, and 959 were used in the phylogenetic analysis.

Three phylogenetic methods included in the program PHYLO_WIN (Galtier et al., 1996) were used: (i) a neighbour-joining algorithm like that developed by Saitou and Nei (1987); the analyses were performed using the Kimura distance option, which corrected for multiple substitutions according to the two-parameter model, allowing for unequal transition and transversion rates; (ii) a maximum parsimony algorithm using the PHYLIP package (Felsenstein, 1993); and (iii) a maximum-likelihood analysis, using the FASTDNAML program (Olsen et al., 1994).

All trees obtained with these phylogenetic methods were plotted using a Macintosh computer and a program (nplot) developed by M. Gouy (URA 243 CNRS, Université Claude Bernard, Villeurbanne, France) that allows the transformation of a formal tree representation (Newick’s format) into Claris Draw drawings. Only topologies that were found to be similar by all three methods were retained as ‘true trees’. Theoretical works have indeed demonstrated that convergence of the results of all three methods is a very strong...
indication that the correct phylogeny has been determined and that the tree topology found was robust (Huelsenbeck & Hillis, 1993; Kim, 1993).

RESULTS
Enrichment and isolation
To enrich for autotrophic, sulphur-reducing thermophiles, 10 ml ASR medium was inoculated with approximately 1 ml chimney suspensions. The enrichments were performed in 50 ml vials with H₂-CO₂ as the gas phase (80:20; 200 kPa) without shaking at 65 °C. Within 2–3 d, turbidity caused by cell growth was observed. This growth consisted of small highly motile rods. H₂S was produced with the reduction of sulphur. All positive enrichment cultures could be transferred successfully in the same medium. To obtain pure cultures, subcultures were streaked onto solidified medium and incubated in an anaerobic jar with the same gas phase at 65 °C. On solid medium, round white colonies (1 mm in diameter) were visible after incubation for up to 3 d. Strain BSAᵀ, which was the first obtained in pure culture after three successive streakings on plates, was studied in detail. Packed cell masses exhibited a pink colour.

Morphology
Cells of strain BSAᵀ appeared as small rods, about 1–2 μm long and 0.4–0.5 μm wide (Fig. 1a and b), and stained Gram-negative. They occurred singly or in pairs. Under the microscope, the cells appeared to be

Fig. 1. Phase-contrast (a) and electron (b–d) micrographs of isolate BSAᵀ. Negatively stained dividing cell (b) showing polar flagella (bar, 200 nm). Freeze-etched cells and metal-shadowed intact cells of isolate BSAᵀ (c) showing the S-layer lattice; F, flagella (bar, 100 nm). By ultrathin section, the typical cell envelope of a Gram-negative bacterium becomes visible (d); S, S-layer; OM, outer membrane; CM, cytoplasmic membrane; PG, peptidoglycan layer. Inset: portions of the S-layer peeling off the outer membrane; S, S-layer.
Desulfurobacterium thermolithotrophum gen. nov., sp. nov.

Temperature (°C)

-0.1
0
0.1
5
(a)

Sea salts (g l⁻¹)

0
3
4
5
6
7
8
9
(b)

-2
-4
-6
-8
-10
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
1
(c)

Fig. 2. Effect of temperature, pH and concentration of sea salts on growth of isolate BSAᵀ in ASR medium. Final optical densities measured at 600 nm after 10–12 h incubation are plotted as a function of temperature (in the presence of 30 g sea salts l⁻¹ at pH 6.25) (a), pH of the medium (in the presence of 30 g sea salts l⁻¹ at 70 °C) (b) and concentration of sea salts (at 70 °C and at pH 6.25) (c).

Fig. 3. Growth of (■) and sulphide production by (●) strain BSAᵀ cultivated under optimal conditions in ASR medium with sulphur as energy source.

Fig. 1. The organism is (a) highly motile, and up to three flagella could be observed by negative staining (Fig. 1b). In the stationary growth phase, some rods became spherical. Freeze fracturing of intact cells showed that the organism is completely covered with an oblique S-layer lattice with centre-to-centre spacings of approximately 11.3 and 6.3 nm and an angle γ between the lattice vectors of approximately 80 ° (Fig. 1c). Ultrathin sections clearly demonstrated that strain BSAᵀ possesses the typical cell envelope profile of Gram-negative bacteria with a cytoplasmic and an outer membrane (Fig. 1d). The S-layer on top of the outer membrane very frequently peels off forming large loops (Fig. 1d, insert).

Determination of growth parameters

Strain BSAᵀ grew between 40 and 75 °C with an optimum around 70 °C, while no growth was detected at 37 and 80 °C after 48 h incubation (Fig. 2a). Growth was observed between pH 4.4 and 8, with an optimum around pH 6 (Fig. 2b). No growth was detected at pH 3.7 or 8.5 after 48 h incubation at 70 °C. Growth could be observed at sea salts concentrations ranging from 15 to 70 g l⁻¹ (Fig. 2c), with an optimum of approximately 35 g l⁻¹ (corresponding to 23 g NaCl l⁻¹). No growth was observed at sea salts concentrations of 10 and 80 g l⁻¹ after 48 h incubation at 70 °C. Under optimal growth conditions (temperature, pH and NaCl), the doubling time of strain BSAᵀ was around 135 min.

Determination of growth requirements

Strain BSAᵀ was a strictly anaerobic, autotrophic organism that used sulphur as an electron acceptor in the presence of H₂ for growth. Of the alternative electron acceptors tested in combination with H₂ as an electron donor, strain BSAᵀ used thiosulphate, and sulphite and polysulphides slightly. It did not use cystine, sulphate, nitrate or nitrite. Growth on sulphur, thiosulphate, polysulphides and sulphite was accompanied by exponential H₂S production that paralleled growth. On sulphur-supplemented medium, when cells entered the stationary phase, the H₂S concentration approached 9 µM (Fig. 3). No growth was observed on acetate, formate, methanol, monomethylamine and...
yeast extract with a $\mathrm{N}_2-\mathrm{CO}_2$ or H_2 headspace, with or without sulphur. Nitrate, tryptone and yeast extract were used as nitrogen sources. When supplemented individually in the basal medium plus sulphur, vitamin B12, vitamin mixture and tungstate–selenate solution (see Methods section) stimulated the growth yield by a factor of two to three, whereas trace element solution and thiamin had no similar effect. Yeast extract (0.2%) was found to be slightly inhibitory (data not shown). The new organism was not able to grow in the ASR medium in the presence of oxygen, even at low concentrations (0.2–1%). By using the same culture conditions with 20 mM thiosulphate and $\mathrm{H}_2-\mathrm{CO}_2-\mathrm{O}_2$ (79:75:19:75:0.5) as the gas phase, *Aquifex pyrophilus*, *Hydrogenobacter thermophilus* and *Calderobacterium hydrogenophilum* showed good growth.

Sensitivity to antibiotics

Growth of strain BSA^T was inhibited by chloramphenicol, penicillin G and rifampicin but not by streptomycin when added before incubation at the optimum temperature.

Determination of catalase

No gas development was observed when cells of strain BSA^T were flooded with $\mathrm{H}_2\mathrm{O}_2$. Cells of *Aquifex pyrophilus*, used as a positive control, exhibited gas production.

Sensitivity to lysozyme

After the addition of lysozyme (5 mg ml$^{-1}$ final concentration), exponentially growing cells of strain BSA^T remained morphologically unchanged during a 3 h period of microscopic inspection.

Lipid analysis

The total lipid content of strain BSA^T was about 6% of the total dry weight. The polar lipid content of the new organism was characterized by the presence of two main components, an aminophospholipid (about 66%, R_f 0.7) and a phospholipid (about 30%, R_f 0.5) and minor compounds. The first spot had an R_f value lower than that of phosphoethanolamine, while the phospho-positive one had the same R_f value as phosphoinositol.

The ^1H NMR spectrum of the phospholipid was similar to that of a phosphoinositol derivative of glycerol esterified with saturated and unsaturated acyl chains. The signals between 4.47 and 3.63 p.p.m., in addition to the signals caused by the disubstituted glycerol with fatty acids, gave coupling constant values typical of inositol (Ferrante et al., 1988). The ^{13}C NMR spectra showed resonances between 14 and 35 p.p.m. typical of a straight acyl chain, together with a signal at 130 p.p.m. resulting from an unsaturation. In the low-field part of the spectra (60–70 p.p.m.), there were signals typical of a glycerol, which was linked to phosphorus at the primary carbon. In fact, the signal at 70.6 δ showed a large coupling constant of 8.1 Hz resulting from the carbon-2 of glycerol, typical of a coupling with a phosphorus of the secondary carbon. In addition, six signals were found, all originating from the methine group (from the DEPT experiment), with chemical shift values falling within a narrow range of 70–77 p.p.m., suggesting an inositol head group. Therefore, the phosphorus-positive compound was identified as a phosphoinositol derivative of 1,2-diacetylglycerol.

The ^1H NMR spectrum of the phosphoamino-positive compound showed resonances typical of a glycerol esterified with saturated and unsaturated fatty acids, as described above. Moreover, a signal at 3.3 δ, attributable to the methylene linked to NH_2, and a complex pattern of signals between 3.4 and 4.12 δ were also present. The ^{13}C NMR spectrum confirmed the ^1H NMR spectrum. In addition to the resonances typical of the bisubstituted glycerol with saturated and unsaturated straight-chained fatty acids, resonances were present from a methylene residue (from the DEPT experiment) at δ 41.3, which is attributable to the CH_2NH_2 and from some CH residues between 72 and 78 p.p.m. Two-dimensional homonuclear shift correlation NMR experiments were not sufficient to clarify the structure of this compound, but that will be completely elucidated when more material becomes available.

FAME fraction analyses of both compounds revealed the presence of saturated and monounsaturated acyl chains. The major FAME components were identified by NMR and GC-MS studies. NMR spectra gave information on the presence of straight acyl chains. Proton spectra showed the presence of the methyl triplet at 0.89 δ attributable to the terminal methyl group of the normal (n) FAME. The spectra showed the typical signals of bulk methylenes at 1-25 δ, of $\alpha-\text{CH}$, at δ 2.29–2.30 and of $\beta-\text{CH}_2$ at δ 1.67. In addition, a broad multiplet was present at δ 2.0 caused by the methylene α forming a double bond. Finally, a multiplet was also found at δ 5.35 as a result of the double bonding methines. The ^{13}C NMR spectra confirmed the proton NMR spectra; the terminal methyl at δ 14.5, the methylenes (from the DEPT experiment) between 22 and 35 p.p.m. and, finally, a signal at δ 130 caused by methine (from the DEPT experiment) were present.

The GC-MS allowed the identification of the major components unambiguously. FAME composition of the two polar lipids was very similar. The phosphoinositol contained nC16:0 (15%), C18:1 (41%) identified as methyl oleate, and nC18:0 (44%) identified as stearate. The phosphoamino-positive compound contained nC16:0 (14%), C18:1 (43%), nC18:0 (31%) and nC20:0 (12%). Minor compounds were also present.
Desulfurobacterium thermolithotrophum gen. nov., sp. nov.

0.01

Calderobacterium hydrogenophilum strain Z-829T

Hydrogenobacter thermophilus strain TK-6T

Aquifex pyrophilus strain Ko15aT

Desulfurobacterium thermolithotrophum strain BSAT

Thermotoga maritima strain MSB8T

Fervidobacterium nodosum strain Rt17-B1T

Geotoga subterranea strain CC-1T

Thermus thermophilus strain HB8T

Fig. 4. Phylogenetic position of strain BSAT among representatives of the orders Aquificales and Thermotogales, and the genus Thermus. The topology shown is an unrooted tree obtained using the neighbour-joining method (Kimura distance option). Branches in bold were retrieved in maximum-likelihood and maximum-parsimony analyses. Numbers depict the percentage bootstrap values obtained for a bootstrap sampling of 100. Scale bar represents the expected number of changes per sequence position.

DNA base composition

The G+C content of the DNA of strain BSAT determined by the thermal denaturation method was 35 mol%. As a control, the base composition of Fervidobacterium nodosum was determined to be 35 mol% [34 mol% by the Tm method (Patel et al., 1985) and by liquid chromatography (Huber et al., 1990)].

16S rDNA sequence analysis

The phylogenetic position of the organism was investigated in detail by including representatives of different genera of thermophilic bacteria. The analyses were performed using three methods: neighbour joining, maximum likelihood and maximum parsimony. The results of all analyses were always consistent, regardless of which method was used or which species were chosen for comparison (data not shown). The same topology of tree was obtained with the three methods and with the different options chosen for the distance-based tree-making methods (Jukes–Cantor distance or Kimura two-parameter distance). The transition–transversion ratio was to 0.91 (mean over all sequence pairs).

In all analyses, the trees obtained showed the existence of two monophyletic units composed of: (i) the genera Calderobacterium, Hydrogenobacter and Aquifex; and (ii) the genera Thermotoga, Fervidobacterium and Geotoga (Fig. 4). The internal branches for both monophyletic units were supported by maximum-likelihood analysis and by bootstrap analysis using the parsimony method (100% of bootstrap replications). The distinctness of the branch that supported strain BSAT with the genera cited above and the relationship between the new strain and the cluster containing the Aquificales were determined by all phylogenetic analysis methods used and retrieved in 98% of bootstrap replications. The levels of similarity between strain BSAT and the reference organisms that were analysed were less than 90%. The highest level of 16S rDNA similarity was the level of similarity with Calderobacterium hydrogenophilum (88.1%).

DISCUSSION

The new isolate BSAT is a Gram-negative, marine, obligately chemolithoautotrophic bacterium that grows under anaerobic conditions with sulphur compounds as electron acceptors. Its optimum growth temperature is 70 °C. On account of its ultrastructural features, its lipid composition and its 16S rDNA sequence, the isolate belongs to the phylogenetic domain of the Bacteria (Langworthy & Pond, 1986; Woese et al., 1990; Sleytr et al., 1996).

The G+C content of the DNA of strain BSAT is 35 mol%. This value is within the range of values obtained for the phylogenetically related genera (Kawasumi et al., 1984; Patel et al., 1985; Huber et al., 1986, 1989, 1990, 1992; Jannasch et al., 1988; Windberger et al., 1989; Jeanthon et al., 1995; Antoine et
The most closely related bacterial groups, members of the order Thermotogales and Aquifex, possess ether lipids (Windberger et al., 1989; Huber et al., 1992; Jeanthon et al., 1995). In contrast, no ether lipids were detected in strain BSAT with the methods used. In addition, lipids of the new organism contained large amounts of monounsaturated C18:1 fatty acids. Unsaturated acyl chains were found recently in the hyperthermophiles Thermotoga maritima and Pyrococcus furiosus, where they represented about 10 and 1% of the total lipids, respectively (Carballéria et al., 1997). The synthesis of high-melting-point fatty acids (C18 and C20) is favoured in strain BSAT. This strategy may probably ensure the functionality of the membrane at high growth temperatures.

Strain BSAT shares some characteristics with its phylogenetic relatives but also exhibits significant physiological differences. The physiology of strain BSAT is not consistent with that of members of the order Thermotogales, which always produce a 'sheath' and are strict heterotrophs (Huber & Stetter, 1992). On the basis of its strict chemolithotrophy, growth on hydrogen, sulphur and thiosulphate as energy sources, its 16S rRNA phylogenetic analysis and its shared secondary structural features, the new organism resembles members of the order Aquificales (Kawasumi et al., 1984; Huber et al., 1992). However, it differs in its inability to grow in microaerophilic conditions. Presumably, in the future, it might be considered as a representative of a novel family.

Ecological significance

Within the walls of deep-sea hydrothermal vent chimneys, microniches are formed by steep gradients of nutrients, temperatures (from 350 to 2 °C within a few centimetres), oxygen levels and fluid velocities. Up to now, described primary producers at deep-sea vents comprised only hyperthermophilic Archaea (Jones et al., 1983, 1989; Zhao et al., 1988; Böschl et al., 1997) and mesophilic Bacteria (Jannasch, 1995). To our knowledge, Desulfurobacterium thermolithotrophum represents the first extremely thermophilic bacterium that can act as a primary producer in the temperature range of 45–75 °C. Up to now, little has been known about the ecological distribution of this new organism. We recently designed a rRNA-based probe specific to the members of the order Aquificales that also hybridized with the new isolate (Harmsen et al., 1997b). The combined use of this probe with a probe specific to the domain Bacteria (which, however, did not hybridize with the known members of the order Aquificales) allowed us to quantify in deep-sea hydrothermal vent chimney samples morphologically diverse cells that hybridized with both probes and included the morphology of strain BSAT (Harmsen et al., 1997b). The bacterial cells that had sequences identical to the target sequences of both probes used represented up to 40%
of the population enumerated using the general bacterial probe. Therefore, strain BSAT and these other phylogenetically very closely related thermophilic micro-organisms may play a significant role within marine hydrothermal environments.

On the basis of the combination of distinct physiological properties and phylogenetic position, we propose to describe the new genus as \textit{Desulfurobacterium}. \textit{Desulfurobacterium thermolithotrophum} is the type species of this genus, and strain BSAT is the type strain of \textit{Desulfurobacterium thermolithotrophum}.

Description of \textit{Desulfurobacterium} gen. nov.

\textit{Desulfurobacterium} (De.sul.fu.ro.bac. te.\'ri.um. L. pref. de from; L.n. sulfur sulphur; Gr. neut. dim. n. bakterion a small rod; M.L. neut. n. \textit{Desulfuro.bacterium} sulphur-reducing rod-shaped bacterium). Cells are Gram-negative rods. Spores are not produced. Anaerobic and thermophilic. Neutrophilic. Strictly chemolithotrophic. The G+C content of the type species is 35 mol\%. The type species is \textit{Desulfuro.bacterium thermolithotrophum}.

Description of \textit{Desulfurobacterium thermolithotrophum} sp. nov.

\textit{Desulfurobacterium} thermolithotrophum (ther.mo.li.-tho.tro'phum. Gr. adj. thermos hot; Gr. masc. n. lithos stone; Gr. masc. n. trophos one who feeds; M.L. neut. adj. thermolithotrophum thermophilic and lithotrophic). Cells are highly motile by means of three polar flagella, occur singly and in pairs and range from 1 to 2 \textmu{}m long by 0.4-0.5 \textmu{}m wide. Whitish colonies about 1 mm in diameter formed on Phytagar plates. Oblique S-layer lattice. Growth occurs between 40 and 75 °C, with an optimum at approximately 70 °C (doubling time 135 min). Growth occurs between pH 4.4 and 8 with an optimum of approximately pH 6.2-6.5 and at sea salts concentrations ranging from 15 to 70 g l-1 with an optimum of approximately 35 g l-1. Sulphur, thiosulphate and sulphite serve as electron acceptors in the presence of H\textsubscript{2}. Growth is inhibited by chloramphenicol, penicillin G and rifampicin at 100 pg ml-1 (determined by the thermal denaturation method). The type strain is \textit{Desulfurobacterium thermolithotrophum} BSAT, which was obtained from a deep-sea hydrothermal vent chimney at the mid-Atlantic ridge (23°N). Strain BSAT has been deposited in the DSMZ under accession number DSM 11699T.

ACKNOWLEDGEMENTS

The excellent technical assistance of Andrea Scheberl and Monika Miksa is gratefully acknowledged. The authors also thank Eduardo Pagnotta for lipid analysis, and V. Mirra and S. Zambardino from the NMR-CNRS service (Naples) for NMR spectra. The Microsmoke cruise was organized by CNRS (D. Prieur, chief scientist) with the N.O. 'Le Nadir' and the D.S.V. 'Nautil' operated by Ifremer. We thank the captain and the crew of N.O. 'Le Nadir' and the D.S.V. 'Nautil' pilots for skilful operations and support crew. This work performed at Roscoff was supported by CNRS, GDR 1006 CNRS/Ifremer, CPER 94-95 (Contrat de Plan Etat-Région), Fonds Structurale Européen (FEDER 5b) and MASTIII program from the EEC (contract no. CT95-0034). Grants from the Austrian Science Foundation, project S7201-MOB, and the Austrian Federal Ministry of Science and Transportation supported the work performed in Vienna.

REFERENCES

Reysenbach, A.-L., Wickham, G. S. & Pace, N. R. (1994). Phylogenetic analysis of the hyperthermophilic pink filament com-

