Transfer of *Pseudomonas cissicola* (Takimoto 1939) Burkholder 1948 to the Genus *Xanthomonas*

F.-P. HU,1 J. M. YOUNG,2,3* D. E. STEAD,3 AND M. GOTO4

Department of Plant Protection, Fujian Agricultural University, Fuzhou, Fujian, People’s Republic of China1; Manaaki Whenua-Landcare Research, Auckland, New Zealand2; Central Science Laboratory, Ministry of Agriculture, Fisheries and Food, Harpenden, Herts AL5 2BD, United Kingdom3; and Plant Pathology Laboratory, Faculty of Agriculture, Shizuoka University, 836 Ohyama, Shizuoka 422, Japan

The type strain of *Pseudomonas cissicola* (Takimoto 1939) Burkholder 1948, strain ICMP 8561 (= NCPPB 2982), was examined. The strain has the determinative characteristics and the fatty acid profile of the genus *Xanthomonas*. The nutritional characteristics of the strain as determined by Biolog microplate screening were also consistent with identification as a *Xanthomonas* species. Some characteristics of the fatty acid profile and reactions to tests on the Biolog microplate were not consistent with characteristics of known *Xanthomonas* species, suggesting that the strain represents a previously unreported species.

*Pseudomonas cissicola* (Takimoto 1939 [10]) Burkholder 1948 (1) was included on the Approved Lists of Bacterial Names (7) on the basis of an emended description (4). The proposed neotype strain, strain PC1, was deposited in the International Collection of Microorganisms from Plants (ICMP). The mislabelling of the type strain in the ICMP and the subsequent mislabelling of strains in other collections later identified as strain PC1T (T = type strain) have been fully discussed (3). Authentic cultures of strain PC1T were redistributed and are designated ATCC 33616T, CFBP 2432T, ICMP 8561T, LMG 2167T, and NCPPB 2982T. However, investigations of this strain (8) indicated that it was a xanthomonad. Further investigation of the type strain of *P. cissicola* based on the redistributed cultures was performed to clarify the position of this species.

The following characteristics of strain PC1T (as ICMP 8561T) were examined: (i) cell morphology and flagellar insertion were ascertained by staining suspensions from a 16-h culture grown in nutrient broth on Formvar-curdon-coated 400-mesh grids by using 0.7% phosphotungstic acid (pH 7.2) and examining the prepared grids with a JEM model JEM 1200EXII transmission electron microscope; (ii) inhibition in the presence of increasing concentrations of 2,3,5-triphenyltetrazolium chloride was investigated (6); (iii) development of poly-β-hydroxybutyrate inclusions was examined (5); (iv) colony characteristics in glucose media were determined following growth for 72 h at 27°C on glucose-yeast extract-carbonate agar (2); (v) utilization of various carbon sources was investigated by inoculating a Biolog GN microplate as recommended by the manufacturer; and (vi) the fatty acid profiles of strains NCPPB 2982T and ICMP 8561T were determined (8).

Strain ICMP 8561T is a rod-shaped bacterium that is motile by means of a single polar flagellum (Fig. 1), grows in the presence of 2,3,5-triphenyltetrazolium chloride only at concentrations less than 0.1%, lacks observable poly-β-hydroxybutyrate inclusions, and produces white, mucoid colonies on glucose-containing media. The 24 fatty acid methyl esters (FAMEs) which were detected included large amounts of iso and anteiso acids. In particular, 15:0 iso and 15:0 anteiso acids, as well as 12:0 3-OH, 11:0 iso 3-OH, and 13:0 iso 3-OH, were found together with a high proportion of branched FAMEs. Large amounts of 10:0 3-OH and small amounts of 12:0 3-OH, 11:0 iso 3-OH, and 11:0 iso were present. ICMP 8561T gave positive reactions in the following Biolog tests: Tween 40, Tween 80, N-acetyl-d-glucosamine, cellobiose, d-fructose, L-fucose, d-galactose, gentiobiose, α-d-glucose, d-psicose, sucrose, L-trehalose, methylpyruvate, monomethylsucinate, α-ketoglu tarate, succinate, bromosuccinate, seccinamate, L-alanylglycine, and glycy1-L-glutamate. Weak or variable reactions were observed with dextrin, glycogen, lactulose, d-mannose, turanose, cis-aconitate, alaninamide, L-alanine, L-aspartate, L-glutamate, L-proline, L-serine, glycerol, DL-a-glycerolphosphate, glucose 1-phosphate, and glucose 6-phosphate. Negative reactions were observed with α-cyclodextrin, N-acetyl-d-glucosamine, adonitol, L-arabinose, D-arabitol, meso-erythritol, meso-inositol, α-D-lactose, maltose, D-mannitol, D-melibiose, β-methyl-d-glucoside, D-raffinose, L-rhamnose, D-sorbitol, xylose, acetate, citrate, formate, D-galactonic acid lactone, D-galactonate, D-gluconate, D-glucosamine, D-glucuronate, α-hydroxybutyrate, β-hydroxybutyrate, γ-hydroxybutyrate, ρ-hydroxyphenylacetate, itaconate, α-ketobutyrate, α-ketovalerate, DL-lactate, malonate, propionate, quinate, D-saccharate, sebacate, glucuronamide, D-glucuronate, L-histidine, hyroxy-L-proline, L-leucine, L-ornithine, L-phenylalanine, L-2-pyrrolglutamate, L-serine, L-threonine, DL-carnitine, γ-amino butyrate, urocanate, inosine, uridine, thymidine, phenyl ethylamine, putrescine, 2-aminoethanol, and 2,3-butanediol.

The generic determinative characteristics of ICMP 8561T (= NCPPB 2982T), which is a rod-shaped bacterium that is motile by means of a single polar flagellum, grows in the presence of 2,3,5-triphenyltetrazolium chloride only at concentrations less than 0.1%, lacks observable poly-β-hydroxybutyrate inclusions, and produces xanthan-like mucoid extracellular material on glucose-containing media, are diagnostic characteristics for *Xanthomonas* spp. The strain also has the fatty acid profile of a xanthomonad with three characteristic acids, 13:0 iso 3-OH, 12:0 3-OH, and 11:0 iso 3-OH. We conclude, therefore, that the type strain of *P. cissicola*, strain PC1, which was received independently at the ICMP and the National Collection of Plant-Pathogenic Bacteria, is a member of the genus *Xanthomonas*. When they placed the species in the genus *Pseudomonas*, Goto and Makino (4) were perhaps misled by the lack of production of the yellow xanthomonadin pigments which are common to, but not universally produced by, members of this genus (9). These authors also appear to

---

* Corresponding author. Mailing address: Manaaki Whenua-Landcare Research, Private Bag 92170, Auckland, New Zealand. E-mail: youngj@landcare.cri.nz.
have reported a false-positive reaction in the test for poly-β-
hydroxybutyrate production. Nevertheless, the body of data
reported here clearly supports reclassification of the strain
in the genus Xanthomonas. The metabolic reactions of Xan-
thonomas spp. as determined by Biolog tests have been
described previously (12). An analysis of the data showed that if
nonvariable reactions were scored as reactions in which more
than 90% of strains gave positive or negative reactions, then
species were not discriminated. We arbitrarily set test variabil-
ity at 20 to 79% for the data of Vauterin et al. (12) in order to
permit a comparison of ICMP 8561T data with their data. Even
on this basis, P. cissicola exhibited more than 95% similarity
with Xanthomonas oryzae and Xanthomonas translucens and
more than 90% similarity with 15 genomic species, but not with
Xanthomonas albilineans, Xanthomonas codiae, Xanthomonas
melonis, Xanthomonas pisi, or Xanthomonas sacchari as char-
acterized (12). Inspection of the results of Biolog tests (12)
indicated that discrimination depended on a very high level of
reproducibility. Future application of the determinative char-
acteristics of Vauterin et al. (12), who also expressed reserva-
tions, should show whether their determinative scheme is ef-
ficacious. The strain which we studied differed from all
recognized species in two or more tests. A comparison of the
strain ICMP 8561T FAME profile with the profiles of 80 Xan-
thomonas pathovars belonging to 17 of the proposed Xan-
thomonas species (13) was performed by using unweighted pair

FIG. 1. Electron micrographs of P. cissicola ICMP 8561T, showing cell morphology and flagellar insertion. Bars = 200 nm.
grouping of libraries. The results showed that strain ICMP 8561T was most similar to strains of *X. translucens* and an atypical strain of *Xanthomonas vesicatoria*. Nevertheless, strain ICMP 8561T could not be placed in *X. translucens* because it contained 10:0 3-OH and an unknown fatty acid with an equivalent chain length of 11.8 that is not present in this species (13). The large amounts of 10:0 3-OH and small amounts of 12:0 3-OH, 11:0 iso 3-OH, and 11:0 iso are unusual for the genus *Xanthomonas*. These fatty acid profile and biochemical test data support placement of strain ICMP 8561T in a previously unreported *Xanthomonas* species.

It is not appropriate to propose the new combination *Xanthomonas cissicola* without investigating more extensively the genomic and phenotypic characteristics of this species compared with previously described species. To do this, a larger number of strains than are available at present is essential (11).

This study was supported in part by a visiting scholarship from the People's Republic of China to F.-P.H. and by New Zealand Foundation for Research Science and Technology grant CO9401 to J.M.Y.

REFERENCES


