Ureaplasma gallorale, an Isolate from Chickens, Is Most Closely Related to the Human Isolate, U. urealyticum

GERALD W. STEMKE* and JANET A. ROBERTSON2

Department of Biological Sciences1 and Department of Medical Microbiology and Immunology.2 University of Alberta, Edmonton, Alberta Canada

Ureaplasma gallorale is a urease-containing mycoplasma (a member of the Mollicutes) which is pathogenic for chickens, from which it was originally isolated. We amplified the 16S rRNA gene of this bacterium and then cloned and sequenced the amplicon. A phylogenetic analysis based on an alignment of the 16S rRNA sequences of U. gallorale and several other Ureaplasma species revealed that U. gallorale is more closely related to Ureaplasma urealyticum than to other Ureaplasma species.

The members of the Mollicutes (trivial name, mycoplasmas) are cubacteria that lack cell walls. These minimal organisms have small genomes with low G+C contents and are considered phylogenetically related to the streptococcus-lactobacillus group of walled bacteria (8). Some members of the family Mycoplasmataceae contain the enzyme urease; these organisms are classified in the genus Ureaplasma. At this time, there are six named Ureaplasma species. The five Ureaplasma species which have been isolated from animals are Ureaplasma urealyticum, which was isolated from humans (7); Ureaplasma diversum, which was isolated from cattle (4); Ureaplasma cati and Ureaplasma felinum, which were isolated from cats (2); and Ureaplasma canigenitalium, which was isolated from dogs (3). The 16S rRNA sequences of the following two representatives of the two biospecies of U. urealyticum have been published previously: strain T960 (GenBank accession number M23935) (8) and strain 27 (accession number L88642) (6). The sequences of the following species obtained from nonhuman animal hosts were recently deposited in the GenBank database by R. Harasawa: U. diversum (accession number D78650), U. cati (D78649), U. felinum (D78651) and U. canigenitalium (D78648). The sixth Ureaplasma species, Ureaplasma gallorale, was isolated from chickens (5), in which it is a significant pathogen. The 16S rRNA gene sequence of this organism was determined in this study.

We amplified most of the 16S rRNA gene of U. gallorale by using primers for conserved 5' and 3' regions of members of the Mollicutes (1) and incorporating the Xhol site in the 5' primer and the PstI site in the 3' primer. After appropriate digestion the amplified ribosomal DNA was ligated to Xhol- and XhoI-digested pBlueScript-SK (Stratagene, La Jolla, Calif.) and selected on the basis of ampicillin resistance and plasmid size (6). The sequence of the insertion was determined by a combination of manual sequencing (double-stranded sequencing, using dyeoxy terminators [Pharmacia, Uppsala, Sweden]) and automatic cycle sequencing (Applied Biosystems, Foster City, Calif.); both strands were sequenced. The 1,515-bp sequence between the primers which we determined represents about 95% of the total 16S rRNA. Using 1,200 nucleotides (a limitation of the computer program) of the Ureaplasma sequences and the Mycoplasma pneumoniae sequence (GenBank accession number M29061), we obtained a multiple alignment with the Clustal computer program and prepared a dendrogram (Fig. 1). The 16S rRNA sequences of all six Ureaplasma species exhibited high levels of homology (>94%) and thus are closely related.

The Ureaplasma species isolated from single host species (the biospecies representatives U. urealyticum T960 and U. urealyticum 27 isolated from humans and U. cati and U. felinum isolated from felines) were phylogenetically related pairs. However, beyond these pairs, there was no correlation between strain and host relatedness. U. gallorale, the species that is most closely related to U. urealyticum, is found in poultry, the host that is the greatest evolutionary distance from humans. Colonization of hosts by mollicutes appears to have occurred independently more than once and not to have closely followed host evolution.

The very large database of 16S rRNA sequences allows rapid access to phylogenetic relationships. However, relationships based entirely on 16S rRNA sequences should be considered tentative until other conserved genes, such as those involved in DNA replication or the signature urease complex, are examined. In the meantime, it may be rewarding to seek ureaplasmas from more varied hosts, especially nondomesticated animals and birds.

* Corresponding author. Mailing address: Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada. Phone: (403) 492-4430. Fax: (403) 492-9234. Electronic mail address: gwSTEMKE@biology.ualberta.ca.

FIG. 1. Dendrogram showing the relationships among the named species of the genus Ureaplasma, including the two biospecies of U. urealyticum. Abbreviations: UU3, U. urealyticum 27; UREA, U. urealyticum T960; UG, U. gallorale; DIVERSUM, U. diversum; CATI, U. cati; FELINE, U. felinum; UDOG, U. canigenitalium; MPNEUMO, M. pneumoniae.
Nucleotide sequence accession number. The nucleotide sequence of the 16S rRNA of *U. gallorale* determined in this study has been deposited in the GenBank database under accession number U62937.

This work was supported by operating grant OGI007320 from the National Engineering and Research Council of Canada.

ADDENDUM IN PROOF

Since the submission of this manuscript, Harasawa and Cassell (1a) have shown the relatedness of the 16S rRNA genes of the five named *Ureaplasma* species from mammalian hosts. They were unable to amplify the rRNA gene for *U. gallorale* and hypothesized that it was genetically distant from *Ureaplasma* species from mammals.

REFERENCES

