Natronococcus amylolyticus sp. nov., a Haloalkaliphilic Archaeon

HARUHIKO KANAI, TETSUO KOBAYASHI, RIKIZO AONO, AND TOSHIKI KUDO

Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 227, and Laboratory of Microbiology, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-01, Japan

The α-amylase-producing haloalkaliphilic archaeon Natronococcus sp. strain Ah-36T (T = type strain) was isolated previously from a Kenyan soda lake, Lake Magadi. Most cells of strain Ah-36T occurred in irregular clusters, and the colonies were orange-red. The polar lipids of this organism were composed of C_{20} C_2 and C_{20} C_2 derivatives of phosphatidylglycerol and phosphatidylglycerophosphate. Phosphatidylglycerol-(cyclo-γ-phosphate) is characteristic of the genus Natronococcus, which is validly described genera, including two genera of haloalkaliphiles, which are characterized by their alkaliphily and very low eutrophic level of DNA homology to Natronobacterium occultus, which represents the only previously described species in the genus Natronococcus. We describe a new species for strain Ah-36T, for which we propose the name Natronococcus amylolyticus.

The extremely halophilic archaea are currently placed in six validly described genera, including two genera of haloalkaliphiles, which are characterized by their alkaliphily and very low Mg++ requirements (3). The haloalkaliphile genera form a distinct group within the halophilic archaea, as determined by 16S rRNA phylogenetic analysis (9). The two haloalkaliphilic genera are the genera Natronobacterium and Natronococcus, whose cells are rod shaped and cocci, respectively. The genus Natronobacterium comprises four species, Natronobacterium magadii, Natronobacterium pharaonis, Natronobacterium gregoryi (15), and Natronobacterium vacuolatum (11), and the genus Natronococcus includes only one previously described species, Natronococcus occultus. The haloalkaliphilic archaea exhibit characteristic simple total-lipid patterns, in which the major polar lipids are C_{20} C_2 and C_{20} C_2 derivatives of phosphatidylglycerol and phosphatidylglycerophosphate (15). These organisms also contain minor phospholipids which can be easily detected by two-dimensional thin-layer chromatography (10, 11); Natronobacterium magadii contains PL3, Natronobacterium pharaonis contains PL1, Natronobacterium gregoryi contains PL1 and PL3, and Natronobacterium vacuolatum contains PL3 and PL4, and Natronococcus occultus contains PL2. PL2 has been identified as C_{20} C_2 and C_{20} C_2 derivatives of phosphatidylglycerol-(cyclo-γ-phosphate) (8), but the other minor phospholipids have not been identified yet. So far, phospholipid PL2 has been found only in Natronococcus occultus among the haloalkaliphilic archaea.

In the course of screening halophiles, we isolated strain Ah-36T (T = type strain), an amylase-producing haloalkaliphilic archaen, and classified this organism in the genus Natronococcus on the basis of some morphological and physiological properties. We purified and characterized the amylase produced by strain Ah-36T (6) and determined its primary structure (5). In this paper we describe additional morphological, physiological, and genetic properties of strain Ah-36T and describe a new species for this organism, for which we propose the name Natronococcus amylolyticus.

MATERIALS AND METHODS

Organisms and growth media. Isolation and preliminary characterization of Natronococcus sp. strain Ah-36T (=JCM 6555T [Japan Collection of Microorganisms, Institute of Physical and Chemical Research]) have been described previously (6). Natronococcus occultus ATCC 43101T, Natronobacterium magadii ATCC 43096T, Natronobacterium gregoryi ATCC 43098T, and Natronobacterium pharaonis ATCC 35678T were obtained from the American Type Culture Collection.

The organisms were grown in natronobacteria medium (1). Microscopy. Cell size and shape were determined by phase-contrast microscopy.

Lipid analyses. Polar lipids were extracted and analyzed by thin-layer chromatography by using the method of Collins et al. (2).

Molecular cloning of the 16S rRNA gene. The 16S rRNA gene was amplified by PCR using total DNA from strain Ah-36T as the template. The following PCR primers were used: 5'-C(G/T)GG(G/T)TTGATCC(G/T)G(G/C)C(A/G)GA-3' (corresponding to the 5' end of the 16S rRNA) and 5'-CATTTAGCCGCGT-3' (complementary to the 16S rRNA at around position 1200). The amplified DNA fragment (length, approximately 1.2 kb) was labeled with digoxigenin-dUTP by using a DNA labeling kit supplied by Boehringer Mannheim Biochemicals. The labeled DNA was used as the probe to detect the 16S rRNA gene in the cloning procedure.

Total DNA which was isolated from strain Ah-36T by a previously described method (5) was digested with EcoRI and analyzed by Southern hybridization to determine the size of the DNA fragment carrying the 16S rRNA gene. A DNA fragment which was approximately 6.5 kb long and hybridized to the probe was cloned in Escherichia coli MV1184 (ura A(lac-proAB) Δinr-recA306::TnI0 φ80lacZAM15 rpsL thi [F lacP lacZAM15 proAB trnaD6]), with pUC119 as the vector by using a previously described procedure (7).

DNA sequencing. The DNA sequence was determined with an Applied Biosystems model 373A DNA sequencer.

Phylogenetic analysis. A phylogenetic tree based on levels of divergence was constructed by the neighbor-joining method (13) by using the Clustal V package comparison.

DNA-DNA homology. Total DNAs from the haloalkaliphilic archaea were isolated by a previously described procedure (5, 15). DNA-DNA hybridization experiments were performed by the dot blot technique (7). Hybridization was carried out in a solution containing 50% formamide and 5% blocking reagent (Boehringer Mannheim) in 2X SSC (1X SSC is 0.15 M NaCl plus 0.015 M sodium citrate) at 55°C (stringent conditions; denaturation temperature ~ 19°C) by using digoxigenin-labeled total DNAs as the probes. The blots were analyzed with a DIG DNA detection kit supplied by Boehringer Mannheim Biochemicals.
Physiological and biochemical features. Some physiological and biochemical features of strain Ah-36^T have been described previously (6). In addition, Ah-36^T did not require a high magnesium ion concentration (>5 mM). Cell growth was observed in the presence of MgCl_2 concentrations of less than 1 mM. This organism was partially susceptible to tetracycline (MIC, 25 µg/ml) while for Natronococcus occultus the MIC was 100 µg/ml; slight growth of strain Ah-36^T and *Natronococcus occultus* was observed in the presence of 12.5 and 50 µg of tetracycline per ml, respectively.

Lipids. The polar lipid pattern of Ah-36^T was the simplest pattern found in the halophilic archaea (Fig. 2). This organism contained C_{20}, C_{20}, and C_{22} derivatives of phosphatidylglycerophosphate and phosphatidylglycerol. Phospholipid PL2, which is characteristic of *Natronococcus occultus* (8), was not present in this organism.

16S rRNA gene sequence. The nucleotide sequence of the 16S rRNA gene and its flanking regions is shown in Fig. 3. The 16S rRNA gene was estimated to be 1,474 nucleotides long by comparing it with 16S rRNA genes of other halobacteria and was followed by a putative alanine tRNA gene after a 133-nucleotide space. The sequence GTTAAG, which resembles the boxA sequence found in members of the family Halobacteriaceae ([T/C]TTAAG) (1a), was observed 214 bp upstream of the putative 5' end of the 16S rRNA. In addition, the sequence TTCGAnnnnnTTAA (n denotes any nucleotide) at positions 268 to 281 was identical to the promoter consensus sequence of ribosomal protein genes in *Halobacterium cutirubrum* (14). The flanking regions of the 16S rRNA gene could form an extensive double-helix structure which could act as a substrate for an RNase III-like enzyme, as demonstrated in *E. coli* (16).

Comparisons with 16S rRNA sequences from other haloalkaliphilic archaea revealed that *Natronococcus occultus* is the closest relative of strain Ah-36^T (Fig. 4), indicating that this strain belongs to the genus *Natronococcus*. However, the low level of sequence similarity (96.4%) may indicate that strain Ah-36^T is a representative of a new species. Strain Ah-36^T exhibited levels of sequence similarity

RESULTS

Morphology. As reported previously (6), strain Ah-36^T cells are nonmotile cocci that are 1 to 2 µm in diameter and occur in irregular clusters, in pairs, and as single cells. Additional morphological studies of Ah-36^T revealed that strain Ah-36^T cells occurred mostly in irregular refractile clusters throughout each culture, while the cells of *Natronococcus occultus*, the type and only previously described species of the genus *Natronococcus*, occurred in pairs and as single cells, as shown in Fig. 1. The Ah-36^T colonies were circular, entire, and orange-red and varied in diameter from 1 to 5 mm, which may have reflected differences in cell numbers in the cell clusters. On the other hand, *Natronococcus occultus* produced pale brown colonies that were uniform in size (diameter, about 1 mm). The orange-red color of Ah-36^T colonies suggests that bacterioruberin or another orange-red pigment is present in this organism.

FIG. 1. Phase-contrast micrographs of *Natronococcus occultus* (A) and *Natronococcus* sp. strain Ah-36^T (B) in the logarithmic growth phase. Bars = 10 µm.

Nucleotide sequence accession numbers. The nucleotide sequence of the 16S rRNA gene of strain Ah-36^T has been deposited in the DDBJ database under accession number D43628. The EMBL accession numbers for the sequences used for comparison are as follows: *Natronococcus occultus*, Z28378; *Natronobacterium magadii*, X72495; *Halofexx volcanii*, K00421; *Halobacterium halobium*, M11583; *Halococcus morrhuae*, X00662; *Haloarcula marismortui*, X61688; *Methanococcus vannielii*, M36507; and *Methanobacterium formicicum*, M36508.

FIG. 2. Thin-layer chromatogram of polar lipids extracted from *Natronococcus occultus* (lane 1) and *Natronococcus* sp. strain Ah-36^T (lane 2). PG, phosphatidylglycerol; PGP, phosphatidylglycerophosphate; PL2, phosphatidylglycerol-cyclo-phosphate.
of 92.9, 90.0, 89.6, 89.4, and 88.6% with *Natronobacterium magadii*, *Halofexx volcanii*, *Halobacterium halobium*, *Halococcus morrhuae*, and *Haloarcula marismortui*, respectively (Table 1).

DNA-DNA homology. Ah-36T did not exhibit significant levels of DNA-DNA homology with *Natronococcus occultus*, *Natronobacterium magadii*, *Natronobacterium gregoryi*, and *Natronobacterium pharaonis* as determined by dot blot hybridization experiments (Fig. 5). Under the same experimental conditions, *Halobacterium halobium* CCM2090 gave strong hybridization signals with *Halobacterium salinarium* CCM2148 and NCMB764 (levels of DNA-DNA homology, 60 and 77%, respectively) (data not shown) (12).

DISCUSSION

On the basis of morphological, physiological, and genetic properties, Ah-36T is a member of the genus *Natronococcus,*
but this strain differs from the only previously described species, *Natronococcus occultus* as follows: (i) the colonies of Ah-36\(^T\) are orange-red, while *Natronococcus occultus* produces pale brown colonies; (ii) Ah-36\(^T\) cells occur mostly in irregular clusters (Fig. 1); (iii) starch is hydrolyzed by Ah-36\(^T\) and gelatin is not liquefied (6), while *Natronococcus occultus* liquefies gelatin and does not hydrolyze starch; (iv) the polar lipids of Ah-36\(^T\) consist of only C\(_{20}\), C\(_{22}\) and C\(_{20}\), C\(_{22}\) derivatives of phosphatidylglycerol and phosphatidylglycerophosphate, and the minor polar lipid phosphatidylglycerol-(cyclo-)phosphate is not detected; (v) the 16S rRNA gene sequences of Ah-36\(^T\) and *Natronococcus occultus* exhibit a level of similarity of only 96.4%; and (vi) no DNA-DNA homology is observed between Ah-36\(^T\) and *Natronococcus occultus*. Thus, we propose that Ah-36 should be designated the type strain of a new species, *Natronococcus amylolyticus*.

Description of *Natronococcus amylolyticus* Kanai, Kobayashi, Aono, and Kudo sp. nov. *Natronococcus amylolyticus* (am.y.l.o. ly'ti.cs. Gr. n. *amyllum*, starch; Gr. adj. *lytikos*, dissolving; M.L. adj. *amylolyticus*, starch dissolving). Cells are nonmotile cocci that are 1 to 2 \(\mu\)m in diameter and occur mostly in irregular clusters. Colonies are circular and orange-red. Cell lysis does not occur in distilled water. Extremely halophilic; growth occurs in the presence of NaCl concentrations between 8 and 30% and optimum growth occurs in the presence of 15 to 20% NaCl. The temperature range for growth is 22 to 50°C, and the optimum temperature is 40 to 45°C. The pH range for growth is 8.0 to 10.0, and the optimum pH is around 9.0. The polar lipids consist of C\(_{20}\), C\(_{22}\) and C\(_{20}\), C\(_{22}\) derivatives of phosphatidylglycerol and phosphatidylglycerophosphate. Does not contain phosphatidylglycerol-(cyclo-)phosphate. Chemoorganotrophic. Obligatory aerobic. Nitrate and nitrite reduction positive. Starch is hydrolyzed. Gelatin is not liquefied. Susceptible to anisomycin, bacitracin, erythromycin, novobiocin, and tetracycline. Resistant to ampicillin, chloramphenicol, polymyxin B, and streptomycin. The G+C content of the DNA is 63.5 mol%. Inhabits a Kenyan soda lake, Lake Magadi.

The type strain is *Natronococcus amylolyticus* Ah-36 (= JCM 9655).

Acknowledgments

This work was supported in part by a grant from the Biodesign Program to T. Kudo.

Table 1. Matrix of levels of relatedness between species of archaea based on levels of similarity of 16S ribosomal DNA sequences

<table>
<thead>
<tr>
<th>Species</th>
<th>Natronococcus amylolyticus</th>
<th>Natronococcus occultus</th>
<th>Natrobacterium magadii</th>
<th>Halobacterium halobium</th>
<th>Haloarcula marismortui</th>
<th>Halofexus volcanii</th>
<th>Haloferax volcanii</th>
<th>Haloarcula marismortui</th>
<th>Halobacterium formicum</th>
<th>Methanobacterium formicum</th>
<th>Methanococcus vannielli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natronococcus amylolyticus</td>
<td>100</td>
<td>96.4</td>
<td>92.9</td>
<td>89.6</td>
<td>90.0</td>
<td>89.4</td>
<td>88.6</td>
<td>76.8</td>
<td>75.6</td>
<td>75.6</td>
<td>75.6</td>
</tr>
<tr>
<td>Natronococcus occultus</td>
<td>100</td>
<td>92.6</td>
<td>89.8</td>
<td>89.0</td>
<td>88.2</td>
<td>87.8</td>
<td>77.6</td>
<td>77.6</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
</tr>
<tr>
<td>Natrobacterium magadii</td>
<td>100</td>
<td>90.1</td>
<td>90.1</td>
<td>88.9</td>
<td>89.5</td>
<td>77.6</td>
<td>75.4</td>
<td>75.4</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
</tr>
<tr>
<td>Halobacterium halobium</td>
<td>100</td>
<td>90.0</td>
<td>88.3</td>
<td>88.9</td>
<td>90.6</td>
<td>78.4</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>Halofexus volcanii</td>
<td>100</td>
<td>88.4</td>
<td>88.2</td>
<td>88.2</td>
<td>77.0</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
</tr>
<tr>
<td>Haloferax volcanii</td>
<td>100</td>
<td>89.6</td>
<td>88.2</td>
<td>88.2</td>
<td>77.0</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
</tr>
<tr>
<td>Haloarcula marismortui</td>
<td>100</td>
<td>89.6</td>
<td>89.6</td>
<td>89.6</td>
<td>76.8</td>
<td>75.6</td>
<td>75.6</td>
<td>75.6</td>
<td>75.6</td>
<td>75.6</td>
<td>75.6</td>
</tr>
<tr>
<td>Methanobacterium formicum</td>
<td>100</td>
<td>87.8</td>
<td>87.8</td>
<td>87.8</td>
<td>77.6</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
</tr>
<tr>
<td>Methanococcus vannielli</td>
<td>100</td>
<td>77.8</td>
<td>77.8</td>
<td>77.8</td>
<td>77.8</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
</tr>
</tbody>
</table>

\(^a\) Sites with gaps and sites where nucleotides were not determined were not included in the comparison.

\(^b\) The 16S ribosomal DNA sequence of the type strain was used.

\(^c\) The rRNA gene sequence was used.
We thank Michael Travisano for carefully reading the manuscript.

REFERENCES

