Chlamydia pneumoniae sp. nov. for Chlamydia sp. Strain TWAR

J. THOMAS GRAYSTON,1,2* CHO-CHOU KUO,1 LEE ANN CAMPBELL,1 AND SAN-PIN WANG1

Departments of Pathobiology1 and Epidemiology,2 University of Washington, Seattle, Washington 98195

A third species, Chlamydia pneumoniae, is proposed for the genus Chlamydia. This bacterium is a human respiratory pathogen, which has been referred to as the TWAR strain of Chlamydia. Species identification is based on ultrastructural differences in the elementary bodies, deoxyribonucleic acid analysis, and serology.

The purpose of this paper is to classify chlamydial strain TWAR as a new species, Chlamydia pneumoniae. The first C. pneumoniae isolate, TW-183T (T = type strain), was isolated in 1965 from the eye of a child in Taiwan (6). The first pharyngeal isolate, AR-39, was obtained from a university student with pharyngitis in Seattle, Wash., in 1983 (hence, TWAR, TW-183T and AR-39) (6). At first, these new organisms were thought to be Chlamydia psittaci (6, 9). To date, in addition to TW-183T, we have obtained 27 isolates, 17 from Seattle and 10 from Finland (in collaboration with P. Saikku), all from pharyngeal swabs of patients with acute respiratory diseases. An isolate said to be a strain, was isolated in England from a conjunctival specimen of a child in Iran (4).

C. pneumoniae was established as an important respiratory pathogen when a series of isolates were obtained from the throats of patients in Seattle with acute respiratory diseases, especially pneumonia, but also bronchitis and pharyngitis (6). C. pneumoniae have been shown to cause endemic and epidemic pneumonia (6-8, 13, 16).

C. pneumoniae was identified as a member of the genus Chlamydia on the basis of the following criteria: obligate intracellular parasitism, the unique developmental cycle (9), shared genus-specific lipopolysaccharide and complement fixation antigen (9), and comparable guanine-plus-cytosine content (3).

Justification for a new species. The justification for establishing a new species for this organism is based on the uniqueness of the ultrastructure of the elementary body, deoxyribonucleic acid (DNA) analysis, and serology.

C. pneumoniae has a pear-shaped elementary body (Fig. 1) (2), unlike the elementary bodies of other Chlamydia species, which are typically round (15). The reticulate bodies of C. pneumoniae are circular, like those of the other species. We examined eight additional C. pneumoniae isolates and found that all had identical morphology (data not shown).

A genetic analysis revealed 10% or less DNA relatedness between C. pneumoniae and the other two species of Chlamydia, while the level of homology was 94% or greater within the species (3). The restriction endonuclease patterns were the same among the C. pneumoniae isolates and were readily distinguishable from those of Chlamydia trachomatis and C. psittaci (1). C. pneumoniae can also be differentiated from the other chlamydiae by using cloned C. pneumoniae restriction fragments or whole chromosomal DNAs as probes (1).

C. pneumoniae can be differentiated serologically from strains of C. trachomatis and C. psittaci by immunofluorescent antibody staining of elementary bodies or inclusions, using C. pneumoniae-specific monoclonal antibodies (9). While antibody responses to C. pneumoniae infection in humans may be detected by the Chlamydia group-reactive complement fixation test, a C. pneumoniae-specific serodiagnosis can be made by the micro-immunofluorescence test (6, 17).

Description of Chlamydia pneumoniae sp. nov. Chlamydia pneumoniae (Pneu.mo'ni.ae. Gr. n. pneumonia, pneumonia, inflammation of the lungs; M.L. gen. n. pneumoniae, pneumonia). The description is based on 10 strains. The species has a chlamydial developmental cycle and in cultured cells has intracytoplasmic inclusions which are round and dense in appearance in Giemsa stain (9). The inclusions are iodine stain negative (they contain no glycoprotein). The elementary body is pleomorphic but typically pear shaped (Fig. 1) (2). The average size is 0.38 μm, with a long axis of 0.44 μm, a short axis of 0.31 μm, and a ratio of the long axis to the short axis of 1.42. The cytoplasmic mass is round, with an average diameter of 0.24 μm. There is a large periplasmic space. Small, round electron-dense bodies (diameter, 0.05 μm), which are attached to the cytoplasm by a stringlike structure, are present in the periplasmic space. The reticulate body is circular and has an average diameter of 0.51 μm. It shares the Chlamydia genus-specific antigen, as determined by staining with genus-specific monoclonal antibodies (9). Sero logically, it can be identified by the monoclonal antibody specific to C. pneumoniae. The guanine-plus-cytosine content of the DNA is 40 mol% (3), which is within the range for chlamydiae (15). No extrachromosomal DNA (plasmid) has been found (1). The organisms grow better at 35°C than at 37°C in cell cultures (11). Cell culture growth is enhanced by pretreatment of host cells with diethylaminoethyl-dextran before inoculation, centrifugation of inoculum onto cell monolayers, and incorporation of antimetabolites, such as cycloheximide, in Eagle minimum essential medium containing 10% fetal calf serum (9, 11). C. pneumoniae shows low virulence to chicken embryos as determined by yolk sac inoculation and to mice as determined by intracerebral, intranasal, and intravenous inoculations and does not cause follicular conjunctivitis in monkeys as determined by conjunctival inoculation (9). The spectrum of antibiotic susceptibility is similar to that of other chlamydiae, except that, like most C. psittaci strains, C. pneumoniae is resistant to sulfonamides (10). The organism has been isolated from human throats and conjunctivae. Differentiation characteristics for the species are listed in Tables 1 and 2.

All of the isolates which have been studied are similar as
FIG. 1. Electron micrographs showing the structure of two kinds of elementary bodies (E). The preparations are organisms that were purified on a linear gradient of Renografin. (A) C. pneumoniae TW-183T. (B) C. trachomatis B/TW-5/OT. Note that the C. pneumoniae elementary bodies are pear shaped, have large periplasmic spaces, and contain small, round, electron-dense bodies (arrowheads). In contrast, the elementary bodies of the other two species, C. psittaci and C. trachomatis, as represented by strain B/TW-5/OT, are round with narrow or barely discernible periplasmic spaces. The reticulate bodies (R) are round in all Chlamydia species. The reticulate body in (A) is broken.

om, Outer membrane. Bar = 0.5 μm.

determined by ultrastructural, DNA, and serological analyses and thus are a single strain. This strain is known as the TWAR strain of C. pneumoniae. So far, only one serovar has been identified.

The type strain is the first isolate, TW-183, which came from the conjunctiva of a child in Taiwan. As with nine subsequent throat isolates from humans, it has all of the properties described above for the species. The type strain has been made available to investigators by the Washington Research Foundation, Seattle, Wash. Strain TW-183T has already been distributed to more than 50 investigators throughout the world.

TABLE 1. Differentiation of Chlamydia species

<table>
<thead>
<tr>
<th>Species</th>
<th>Elementary body morphology</th>
<th>Inclusion morphology</th>
<th>Glycogen in inclusions</th>
<th>Folate biosynthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. trachomatis</td>
<td>Round</td>
<td>Oval, vacuolar</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. psittaci</td>
<td>Round</td>
<td>Variable shape, dense</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C. pneumoniae</td>
<td>Pear shaped</td>
<td>Oval, dense</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Modified from reference 15.

* As determined by Giemsa staining of cultured cells.

+ As evidenced by positive iodine staining of inclusions (5).

- As demonstrated by inhibition of chlamydial growth in chicken embryo yolk sacs by adding 1 mg of sulfadiazine per embryo (12).

+ Based on in vitro susceptibility test in cell cultures showing resistance to sulfisoxazole (10). This test cannot be done in eggs due to the low virulence of C. pneumoniae.
TABLE 2. Some characteristics of the species and biovars of the genus Chlamydia*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>C. trachomatis biovars</th>
<th>C. psittaci</th>
<th>C. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trachoma</td>
<td>Lymphogranuloma venereum</td>
<td>Mouse</td>
</tr>
<tr>
<td>Guanine-plus-cytosine content of DNA (mol%)</td>
<td>40</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>% DNA homology to C. pneumoniae</td>
<td>10</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>Plasmid</td>
<td>+</td>
<td>NA</td>
<td>+/-</td>
</tr>
<tr>
<td>No. of serovars as determined by microimmunofluorescence</td>
<td>12</td>
<td>3</td>
<td>NA</td>
</tr>
<tr>
<td>Type specificity as determined by monoclonal antibodies*</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>Natural hosts</td>
<td>Humans</td>
<td>Humans</td>
<td>Mice</td>
</tr>
<tr>
<td>Preferred site of infection</td>
<td>Squamo-columnar epithelium (ocular-genital, respiratory)</td>
<td>Lymph nodes</td>
<td>Lungs</td>
</tr>
<tr>
<td>Intracerebral lethality in mice</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Follicular conjunctivitis in monkeys</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cell culture enhancement of infectivity by:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrifugation of inoculum onto monolayer</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Treatment of host cells with diethylaminoethyl-dextran</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plaque on L cells</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*a Modified from reference 15.
*b See references 3, 6, 9, 11, and 17.
*c NA. Data not available.
*d Some strains do not contain plasmids (1, 14).
*See references 9 and 18.

This study was supported by Public Health Service grants AI 21885 and AI 16222 from the National Institutes of Health.

We thank Pekka Saikku, Carl Mordhorst, and Thomas Marrie for their collaboration in the studies defining the clinical disease associated with strain TWAR infection and for their concurrence in the choice of C. pneumoniae as the species name. We also thank Emil Y. Chi for assisting with the electron microscopy study and Rachel L. Cox for her contribution to the DNA study.

LITERATURE CITED