Reclassification of *Bacteroides termitidis* Sebald (Holdeman and Moore) in a New Genus *Sebaldella*, as *Sebaldella termitidis* comb. nov.

M. D. COLLINS and H. N. SHAH

Department of Food Microbiology, Food Research Institute, Shinfield, Reading RG2 9AT, and Department of Oral Microbiology, London Hospital Medical College, London E1 2AD, United Kingdom

Bacteroides termitidis (Sebald) differs so much from the type species of the genus *Bacteroides*, *Bacteroides fragilis* (Castellani and Chalmers), that it should not be retained within this genus. On the basis of biochemical, chemical, and genetic criteria, we propose that *Bacteroides termitidis* be reclassified in a new genus, *Sebaldella*, as *Sebaldella termitidis* comb. nov., the type species of the genus. The type strain of *S. termitidis* is strain NCTC 11300 (= ATCC 33386).

Bacteroides termitidis was originally isolated from the posterior intestinal contents of termites (*Reticulitermes lucifugus*), where it is part of the predominant bacterial flora (7). However, the taxonomic position of *B. termitidis* is controversial (9). In Bergey's Manual of Systematic Bacteriology, 39 species of *Bacteroides* are recognized (2). These species are biochemically and chemically very diverse, and their guanine-plus-cytosine (G+C) contents range from 28 to 61 mol% (2, 9).

We have indicated previously (9) that the genus *Bacteroides* should be restricted to *Bacteroides fragilis* and related species (e.g., *Bacteroides egerthii*, *Bacteroides distasonis*, *Bacteroides ovatus*, *Bacteroides thetaiotaomicron*, *Bacteroides uniformis* and *Bacteroides vulgatus*). The *B. fragilis* group of organisms exhibits a relatively small G+C content range (ca. 40 to 48 mol%) (3) and has relatively homogeneous biochemical and chemical properties (9). For example, *B. fragilis* and related species produce succinic and acetic acids as the major end products of glucose metabolism (2) and possess enzymes of the hexas monophosphate shunt-pentose phosphate pathway (viz., glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase), and glutamate and malate dehydrogenases (9, 10). *B. termitidis* differs from the *B. fragilis* group by exhibiting a lower G+C content (32 to 36 mol%), by producing acetic and lactic acids as major end products of glucose fermentation, and by lacking hexose monophosphate shunt enzymes and glutamate and malate dehydrogenases (7, 9; Collins and Shah, unpublished data). *B. termitidis* also differs markedly from the *B. fragilis* group in lipid composition. The long-chain fatty acids of *B. fragilis* and related species are predominantly of the straight-chain saturated, anteiso- and iso-methyl branched-chain types, with mono-unsaturated acids either absent or present in only trace amounts (4, 8). In contrast, *B. termitidis* primarily synthesizes acids of the straight-chain saturated and monounsaturated types, and methyl branched acids are absent. For example, in strain NCTC 11300T (T = type strain) the following acids are found: C₁₂:₀ (2.5%), C₁₄:₀ (8.5%), C₁₆:₀ (37.0%), C₁₆:₁ (3.0%), C₁₈:₀ (0.5%), C₁₈:₁ (41.0%), 30H-C₁₄:₀ (7.0%) and 30H-C₁₆:₀ (0.5%). Similarly, the *B. fragilis* group and *B. termitidis* differ in their isoprenoid quinone compositions; *B. fragilis* and related species possess menaquinones (vitamin K₂), whereas *B. termitidis* lacks respiratory quinones (1, 8). On the basis of 16S ribosomal ribonucleic acid oligonucleotide cataloging studies, Paster and associates recently demonstrated that *B. termitidis* is phylogenetically distinct from other *Bacteroides* species (including the type species, *B. fragilis*) and that this species does not cluster with any of the previously defined eubacterial phyla (5). The latter studies reinforce the major phenotypic differences between *B. termitidis* and the *B. fragilis* group of organisms and support our previous suggestion that *B. termitidis* should be removed from the genus *Bacteroides* (9). Therefore, in view of the overwhelming phenotypic and phylogenetic evidence, we formally propose that bacteria presently designated *B. termitidis* be reclassified in a new genus, *Sebaldella*, as *Sebaldella termitidis* comb. nov. Characteristics that are useful in distinguishing the genus *Sebaldella* from *B. fragilis* and other *Bacteroides* spp. with low G+C contents are summarized in Table 1.

Description of *Sebaldella gen. nov.* *Sebaldella* (Se. bal' de la. M.L. dim. ending -ella; M.L. fem. N. *Sebaldella* named after the French microbiologist Madeleine Sebald, who first described the organism) cells are gram-negative, nonspore-forming, nonmotile rods. Obligately anaerobic. Acid produced from glucose and some other sugars. The major end products of glucose fermentation are acetic and lactic acids; formic acid may also be produced. Hexose monophosphate shunt enzymes, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase are absent. Glutamate dehydrogenase and malate dehydrogenase are absent. Nonhydroxylated and 3-hydroxylated long-chain fatty acids are present. The fatty acids are primarily of the straight-chain saturated and monounsaturated types. Menaquinones are absent. The deoxyribonucleic acid base composition is 32 to 36 mol% G+C, as determined by chromatographic (7) and buoyant density (6) methods. The type species is *Sebaldella termitidis*.

Description of *Sebaldella termitidis* comb. nov. The gram-negative, obligately anaerobic, nonmotile, rod-shaped cells are 0.3 to 0.5 by 2 to 12 μm with central swellings and occur singly, in pairs, and in filaments. Surface colonies are 1 to 2 mm in diameter, circular, and transparent to opaque. Colonies in deep agar are lenticular and nonpigmented. Acetic and lactic acids are the major end products of glucose metabolism; formic acid may also be produced. Acid is produced from glucose, fructose, maltose, mannitol, mannose, rhamnose, sucrose, trehalose, and xylose. Acid is not produced from arabinose, melezitose, or starch; low levels
TABLE 1. Biochemical and chemical characteristics useful in distinguishing the genus *Sebaldella* from *Megamonas*, *B. fragilis*, and other *Bacteroides* species with low G+C contents

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Major end products from PYG<sup>a</sup></th>
<th>Mode of metabolism<sup>b</sup></th>
<th>Malate dehydrogenase</th>
<th>Glutamate dehydrogenase</th>
<th>Glucose-6-phosphate dehydrogenase</th>
<th>6-Phosphogluconate dehydrogenase</th>
<th>Menaquinones</th>
<th>Major long-chain fatty acids</th>
<th>G+C content (mol %)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebaldella</td>
<td>A, L</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C<sub>16:0</sub>, C<sub>18:1</sub></td>
<td>C<sub>15:0</sub></td>
<td>32–36</td>
</tr>
<tr>
<td>Megamonas</td>
<td>P, A, I</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>C<sub>15:0</sub></td>
<td></td>
<td>32–35</td>
</tr>
<tr>
<td>B. fragilis</td>
<td>S, A</td>
<td>F</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides coagulans</td>
<td>a</td>
<td>NF</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>MK-10, MK-11</td>
<td>antiseo-C<sub>15:0</sub></td>
<td>41–44</td>
</tr>
<tr>
<td>Bacteroides furoeus</td>
<td>L, a</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>C<sub>16:0</sub>, C<sub>18:1</sub></td>
<td>37</td>
</tr>
<tr>
<td>Bacteroides praecacus</td>
<td>A, B, IV</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td>C<sub>18:0</sub></td>
<td>28</td>
</tr>
<tr>
<td>Bacteroides putridinoid</td>
<td>S, IV, P</td>
<td>NF</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td>iso-C<sub>15:0</sub></td>
<td>ND</td>
</tr>
</tbody>
</table>

^a A and a, Acetic acid; B, butyric acid; L and l, lactic acid; P, propionic acid; S, succinic acid; IV, isovaleric acid. Upper-case letters indicate major products, and lower-case letters indicate minor products. Data from reference 2.

^b F, Fermentative; NF, nonfermentative or weakly fermentative.

^c Data from references 2, 3, and 9.

^d ND, Not determined.

Collins, unpublished data.

of acid may be produced from lactose (delayed reaction). Most strains produce H₂S. Gelatin is not liquefied; coagulated proteins are not attacked. Urease, chitinase, and indole are not produced. Nitrate is not reduced. Uric acid is degraded to CO₂, acetate, and ammonia. Malate dehydrogenase and glutamate dehydrogenase are not produced.

Nonhydroxylated and 3-hydroxylated long-chain fatty acids are present. The fatty acids are of the straight-chain saturated and monounsaturated types, with hexadecanoic and octadecenoic acids predominating. Menaquinones are not produced. The G+C content of the deoxyribonucleic acid is 32 to 36 mol% (6, 7). Isolated from posterior intestinal contents of termites, where these organisms are part of the predominant bacterial flora. The type strain is strain NCTC 11300 (= ATCC 33386).

Description of the type strain. The description of the type strain corresponds to that of the species, except that glycerol and lactose are not fermented and H₂S is produced.

LITERATURE CITED