Aquaspirillum magnetotacticum sp. nov., a Magnetic Spirillum

D. MARATEA AND R. P. BLAKEMORE

Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824

We studied the taxonomically relevant characteristics of a microaerophilic, chemoheterotrophic, magnetotactic, freshwater spirillum. Our results indicated that this organism represents a new bacterial species, which is most appropriately placed in the genus *Aquaspirillum* despite its microaerophilic nature and its lack of detectable catalase and oxidase activities. The name proposed for this new species is *Aquaspirillum magnetotacticum*, which reflects the remarkable magnetic responsiveness of this organism. The type strain is MS-1 (= ATCC 31632).

Diverse morphological types of magnetotactic bacteria have been found in aquatic sediments throughout the world (2-4, 16). The magnetic orientation of these bacteria is due to cytoplasmic, enveloped, electron-dense, magnetic particles called magnetosomes (1, 9). One of these unusual bacteria, a microaerophilic spirillum designated strain MS-1, was isolated from a freshwater swamp and has been grown in pure culture in a chemically defined medium. The cells of this bacterium were partially characterized, and despite their ability to synthesize magnetosomes, they resembled the cells of members of the genus *Aquaspirillum* in that they were nonmarine, heterotrophic, gram negative, and helical with bipolar flagella (5). In this paper we describe the results of a taxonomic study of this organism.

(Some of the results have been presented previously [R. P. Blakemore, R. S. Wolfe, and D. Maratea, Abstr. Annu. Meet. Am. Soc. Microbiol. 1979, N38, p. 185].)

MATERIALS AND METHODS

Bacterial strains and culture conditions. The organisms used in this study were the magnetic spirillum strain MS-1 and a cloned, nonmagnetic line derived from strain MS-1. The isolation and culture methods, the results of a partial characterization study (5), and the ultrastructures (1) of magnetic and nonmagnetic forms of strain MS-1 have been described previously. Stock cultures were frozen in 10% dimethyl sulfoxide as a cryoprotectant or were maintained at 70% (v/v) potassium cyanide were determined by observing growth responses in semisolid growth medium for 2 weeks. The ability to hydrolyze sodium hippurate (10), casein (10), or soluble starch (13) when each was supplied in a semisolid growth medium at a final concentration of 1% (wt/vol) was determined after 1 week of growth. The hydrolysis of 0.5% (wt/vol) esculin (15) by growing cells was determined by using a similar adaptation of the standard procedures to microaerobic growth conditions with semisolid media. The hydrolysis of gelatin was determined by supplementing a chemically defined medium with 12% (wt/vol) gelatin (Difco). *Pseudomonas maltophilia* was used as a positive control. Liquefaction was determined after cooling to 4°C. Soluble pigment production was determined with cells grown in a semisolid growth medium containing 0.5% (wt/vol) L-tryptophan, L-phenylalanine, or L-tryptophan. Fluorescent pigment production was determined by viewing liquid cultures in ultraviolet light.

Urease activity was determined by observing pH changes with washed cell suspensions in BES buffer.
Proteus vulgaris was used as a positive control. The phosphatase and sulfatase activities of concentrated cell suspensions were tested after incubation for 6 h at 31°C with 0.05% (wt/vol) sodium phenolphthalein diphosphate and potassium phenolphthalein disulfate (Sigma Chemical Co.), respectively. Immediate formation of a pink color after 1 drop of 10 N NaOH was added indicated a positive test (15). P. vulgaris was used as a positive control for each test.

The ability of cells to grow in peptone succinate salts medium (14) and modified peptone succinate salts medium (6) was assessed by using semisolid forms of these media in screw-capped culture tubes with and without added sodium thioglycolate. Cells were also inoculated into liquid forms of these media under aerobic or microaerobic conditions. Cells were tested for the ability to grow and to produce acid in the presence of glucose, sucrose, or maltose, each of which was added to a chemically defined growth medium. The sugars were added to final concentrations of 0.5 and 1.0% (wt/vol), and the pH values before and after growth were measured with an electrode. Cells were also inoculated into a chemically defined growth medium modified so that any one of a variety of carbohydrates was the sole carbon source (5).

Cells were tested for the ability to grow on differential media, including eosin methylene blue agar (BBL) and MacConkey agar (BBL) in petri dishes and triple sugar iron agar (BBL) in tubes inoculated by streaking and stabbing. To allow growth of surface colonies, these media were supplemented with 30 U of catalase per ml and incubated aerobically.

Freshly autoclaved tubes of litmus milk (Fisher Scientific Co.) in which oxygen gradients had formed were inoculated and examined for alkaline reactions over a 2-week period.

RESULTS

As described previously (5), cells of strain MS-1 are small, helical, gram negative, and of freshwater origin (Fig. 1). They have deoxyribonucleic acid base composition of 64.5 mol% guanine plus cytosine. This organism is chemoheterotrophic but does not use carbohydrates or amino acids as sole carbon and energy sources. Optimal growth occurs microaerobically at 30°C in a simple, defined medium containing any one of several tricarboxylic acid cycle intermediates as a carbon source. Under these conditions, the quantity of nitrate reduced to nitrous oxide by growing cells corresponds to the amount of substrate oxidized to CO₂. However, a small amount of oxygen is also required for growth (11).

Our results indicated that strain MS-1 does not hydrolyze casein, starch, or hippurate, does not produce indole from tryptophane, and is phosphatase positive and sulfatase negative. Intracytoplasmic granules resembling poly-β-hydroxybutyric acid are often quite numerous within cells. Coccolid bodies are formed late in growth or under adverse culture conditions. Surface colonies grown aerobically (with catalase) or microaerobically are pinpoint, rough edged, and translucent. Aerobically grown cells are not magnetotactic. Although untreated cells give a negative oxidase test, toluene-treated cells give a faintly positive delayed-type test (15).

The biological and biochemical characteristics of strain MS-1 are shown in Table 1. The magnetotactic and non-magnetotactic cells are identical except in those characteristics that are related to magnetism, such as the presence of magnetosomes and magnetically directed swimming behavior.

DISCUSSION

As pointed out by H. G. D. Niekus (Ph.D. thesis, Vrije University, Amsterdam, The Netherlands, 1980), the high guanine-plus-cytosine content of the deoxyribonucleic acid of strain MS-1 is an exception to the general rule that microaerophiles have low guanine-plus-cytosine.
contents. Based on their small size, high gua-
nine-plus-cytosine content, and single bipolar
flagellation pattern, strain MS-1 cells are similar
to cells of A. polymorphum (12). In contrast,
however, A. polymorphum is phosphatase neg-
ative, hydrolyzes esculin, and does not reduce
nitrate beyond the nitrite stage (12). Strain MS-
1 grows in the presence of 1% glycine, a charac-
teristic shared only by Aquaspirillum dispar
and Aquaspirillum aquaticum (12). Like Aq-
uspirillum delicaturn and Aquaspirillum an-
ulus, strain MS-1 does not grow in the presence
of 1% bile (12). Of the known members of Aq-
uspirillum, only a strain of Aquaspirillum gies-
bergeri (previously "Spirillum graniferum"
NCIB 8230) does not produce hydrogen sulfide
from cysteine (12). The growth of strain MS-1
was inhibited by cysteine in the medium; this
could have resulted from a toxic accumulation
of hydrogen peroxide produced when cysteine
was exposed to atmospheric oxygen at the
surface of the semisolid medium (7).

We should point out that whereas most of the
biochemical tests reported by other workers for
Spirillum and Aquaspirillum species were car-
rried out with cells grown in media containing
peptone, succinate, and salts (12), cells of strain
MS-1 grew variably in such a medium and were
not magnetotactic. Consequently, in this study
we used a simple, chemically defined medium in
which strain MS-1 grew best.

Strain MS-1 differs from other members of
the genus Aquaspirillum principally in its lack
of detectable catalase activity and in its ability
to synthesize magnetite (Fe₃O₄), resulting in its
magnetotactic behavior. Since magnetotaxis is a
characteristic of very diverse morphological
types of bacteria found in ecologically diverse
habitats, we consider magnetite synthesis alone,
like methanogenesis, nitrogen fixation, or H₂
atmotrophism alone, to be an insufficient crite-
ron for separation of taxa at the generic level.

In conclusion, strain MS-1 shares many rele-
vant taxonomic characteristics with the genus
Aquaspirillum as described by Hylemon et al.
(12). We propose the name Aquaspirillum mag-
etotacticurn sp. nov. for strain MS-1 and similar
organisms. A description of this new species
follows.

Aquaspirillum magnetotacticum sp. nov.
(mag ne to tac'ti cum. Gr. n. magnes magnet,
comb. form magneto-; Gr. adj. taktikos showing
orientation or movement directed by a force or
agent; magnetotacticum capable of orientation
with respect to a magnet).

Helical (clockwise) spirilla, 0.2 to 0.4 by 4.0 to
6.0 μm, with a tendency to form long chains and
coccoid bodies in older cultures; the wavelength
is 1 to 2 μm. Gram negative. Motile by means of
a single flagellum at each pole. Each magnet-
tactic cell contains a variable number of envel-
oped magnetite (Fe₃O₄) particles arranged in a
chain within the cytoplasm; each particle (mag-
netosome) is approximately 40 to 50 nm on a
side. Intracytoplasmic granules presumed to be
poly-β-hydroxybutyrate are present. Optimal
growth occurs at 30°C. Chemoheterotrophic.
Microaerophilic. Growth in the presence of KGN
is inhibited. Cannot grow anaerobically with ni-
trate. Does not hydrolyze casein, starch, hippur-
ate, esculin, or gelatin. Selenite is not reduced.
Hydrogen sulfide is not produced from cysteine.
Catalase, oxidase, urease, sulfatase, and indole
are negative. Oxidase test is faintly positive with toluene-treated cells. Phosphatase is positive. There is no alkaline reaction in litmus milk. Grows in the presence of 1% glycine, but growth is inhibited by 1% bile or 1% NaCl. No pigment is produced from aromatic amino acids. A water-soluble fluorescent pigment is not produced. Nitrate is reduced to nitrous oxide without nitrite accumulation. Ammonia is formed during growth in nitrate-containing medium. A variety of tricarboxylic acid cycle intermediates are used as sole carbon sources. Carbohydrates are not used as sole carbon sources. Nitrate and ammonium ions are utilized as nitrogen sources. The guanine-plus-cytosine content of the deoxyribonucleic acid is 64.5 mol%.

Type strain: strain MS-1. A culture of strain MS-1 has been deposited with the American Type Culture Collection under the number ATCC 31632. Since at present the type strain is the only known strain in the species, the description of the type strain is the same as that for the species.

ACKNOWLEDGMENTS

We gratefully acknowledge the valuable technical assistance of Joyce Tugel and Nancy Blakemore. D. L. Balkwill provided expert assistance with electron microscopy. This work was supported by grant PCM-7922224 from the National Science Foundation and by contract N00014-80-C-0029 with the Office of Naval Research.

REPRINT REQUESTS

Address reprint requests to: R. P. Blakemore, Department of Microbiology, University of New Hampshire, Durham, NH 03824.

LITERATURE CITED