Reevaluation of *Mycobacterium fortuitum* (Synonym: *Mycobacterium ranae*)

J. M. GRANGE and J. L. STANFORD

The School of Pathology, The Middlesex Hospital Medical School, London, WIP 7LD, England

One hundred strains of *Mycobacterium fortuitum* (*M. ranae*) were characterized. Strains now recognized as belonging to the species *M. chelonei* were excluded. Seven serotypes of *M. fortuitum* showed some correlation with cell wall lipids, colony types, temperature tolerance, Bönice's biotypes, and other properties. Serotype I was frequently associated with disease, whereas serotype II, although common in the environment, never was. *M. fortuitum* subsp. *fortuitum* and *M. fortuitum* subsp. *giae* belong to serotypes I and V, respectively; the other serotypes were not considered worthy of special subspecific designation. A list of the constant and variable characteristics of *M. fortuitum* is given.

In 1904 Rupprecht (28) described the occurrence of tuberculosis in a frog, and in the following year Küster (19) cultured the causative organism from such cases. These "frog tubercle bacilli" were named *Mycobacterium ranae* in the first edition of *Bergey’s Manual of Determinative Bacteriology* in 1923, and this designation was employed in a number of good taxonomic studies by Aronson (1), Furth (8), Furth and Aronson (9), Gordon (10), Griffith (15), Mudd (23), and Wilson (42). The name *Mycobacterium fortuitum* was introduced in 1938 by da Costa Cruz (6) for a supposedly hitherto undescribed species. The synonymity of *M. fortuitum* and *M. ranae* was established in 1969 by Stanford and Gunthorpe (31), who strongly recommended the reinstatement of *M. ranae* as the legitimate name of the species. However, acting on the request by Runyon (27), the Judicial Commission (Minutes, Judicial Commission of the ICSB, to be published) of the International Committee on Systematic Bacteriology of the International Association of Microbiological Societies has conserved the specific epithet *fortuitum* against *ranae* in the name of this organism.

The name *M. fortuitum* has not always been used correctly in the literature, and it is likely that many strains identified as belonging to *M. fortuitum* were in fact strains of *M. chelonei* Bergey et al., as suggested by Weiszfeiler et al. (40). Furthermore, there has been a tendency to use the name *M. fortuitum* as a convenient label for any rapidly growing, nonchromogenic mycobacterium isolated from clinical material. Thus Marks (21) had advocated the use of the term "fortuitum group" for the so-called species *M. fortuitum*, *M. peregrinum*, *M. abscessus*, and *M. borstelense*.

In the taxonomic studies of Tsukamura and his colleagues (34-37), the species *M. fortuitum* is defined as including a group known as *M. fortuitum* subsp. *runyonii*. Strains of this group have been shown by Stanford et al. (32) to belong to the species *M. chelonei*. On the other hand, *M. fortuitum* was regarded as a species distinct from *M. chelonei* (synonym: *M. abscessus* and *M. borstelense*) and from *M. peregrinum* on the basis of agglutination serology and lipid chromatography patterns by Jenkins et al. (16). Recent studies (18, 24) have shown that *M. fortuitum* includes the type strains of *M. ranae*, *M. minetti*, *M. giae*, and *M. peregrinum*.

There is, therefore, a need for a redefinition of *M. fortuitum* to include all currently recognized variants of this species as well as to differentiate it from other species of rapidly growing mycobacteria. It is the purpose of this paper to reevaluate *M. fortuitum* by delineating its boundaries and ascertaining the extent and nature of variation occurring within these boundaries. For this purpose, a serological, cultural, and biochemical analysis of 100 strains of diverse origins was undertaken.

MATERIALS AND METHODS

Bacterial strains. One hundred strains of *M. fortuitum* were studied; 66 were from national and private
culture collections and 34 were recent isolates from soil and vegetation in Uganda (34).

Cotyte strains of \textit{M. fortuitum} (ATCC 6841 [31] and \textit{M. ranae} (NCTC 2891 [2]), type strains of \textit{M. gie} (ATCC 11440 [7]) and \textit{M. peregrinum} (NCTC 10264 [3]), and a strain known as \textit{M. minetti} NCTC 3631 (25) were included. The other strains in the study were isolated over the period 1923 to 1972 and were obtained from Belgium, Brazil, Denmark, Germany, Japan, Malta, Mexico, Nigeria, Uganda, the United Kingdom, the U.S.A., and Zaire. The original designations and origins of the 100 strains are listed in Table 1.

Cultural properties. The rate of growth and pigmentation on Lowenstein-Jensen medium at 32 and 42 °C and growth on MacConkey medium at 32 °C were observed.

The morphology of colonies on 1% nutrient agar was examined by means of a plate microscope (12).

Biochemical investigations. The strains were tested for their ability to hydrolyze Tween 80 within 10 days (39), to liberate sulfur ions from phenolphthalein disulfate within 3 and 10 days (41), and to reduce nitrate to nitrite ions within 4 and 24 h (4, 38). Strains grown on Lowenstein-Jensen medium were tested for nicotinic acid (niacin) production (17).

Utilization of carbohydrates was demonstrated by the method of Gordon and Smith (11), amidase activity by the technique of Bönice (4), and hydrolysis of the pyrimidines cytosine, thymine, and uracil by the method of Röhrescheidt et al. (26).

Resistance to aminoglycoside antibiotics. One loopful of bacteria was suspended in 2 ml of nutrient broth, and one loopful of this suspension was spread onto dextrose sensitivity test agar (Oxoid) containing lyed blood. After drying, disks containing streptomycin (10 µg), neomycin (10 µg), kanamycin (30 µg), and gentamicin (10 µg) were placed on the agar. Zones of inhibition were read after 48 h of incubation at 32 °C.

Lipid chromatography. The lipid composition of the strains was studied by the technique of Marks and Szulga (22). Thin-layer plates were prepared from silica gel (BDH Laboratory reagents), and the solvent used for the chromatographic run was a mixture of 75 parts n-propanol, 6 parts 0.880 ammonia, and 22 parts distilled water.

Serological studies. The application of immunodiffusion analysis to the taxonomic study of mycobacteria has been described previously (20, 29, 30). Antisera to serotypes I, II, and V of \textit{M. fortuitum} were available from previous studies (13, 18, 24, 31), and additional antisera were prepared against a serotype III (a clinical isolate from Zaire), a serotype IV (NCTC 2006), a serotype VI (collection no. 91), and a serotype VII strain (collection no. R49).

RESULTS

Cultural properties. All strains grew within 7 days on Lowenstein-Jensen medium at 32 °C, and 41 strains grew within the same period at 42 °C. None of the strains were chromogenic. All strains grew on MacConkey medium at 32 °C with binding of the indicator dye. On nutrient agar, three colony types were observed, one smooth type (S) and two rough types (R1 and R2) as previously described (12). The S colonies were glossy, mucoid, and dome shaped with an entire edge. R1 colonies were flat, opaque, brittle, and rhizoid, and R2 colonies were of a waxy appearance and consistency with an undulate edge and a central papilla. Forty-three strains contained S colonies with varying numbers of R1 and R2 colonies. Twelve strains were purely of the R1 type, 41 were purely of the R2 type, and 4 were a mixture of R1 and R2 colonies.

Biochemical properties. All strains hydrolyzed Tween 80 within 10 days. Arylsulfatase activity was detectable in 93 strains within 3 days and in all strains within 10 days. Ninety-nine strains reduced nitrite ions within 4 h, and one strain gave a weak reaction only after 24 h. Niacin was not produced by any of the strains.

On the basis of carbohydrate utilization, the strains were divisible into the three biotypes of Bönice (5). Thus, 38 strains utilizing glucose, fructose, mannose, and trehalose were of biotype A, 17 strains also utilizing mannitol and sorbitol were of biotype B, and 45 strains additionally utilizing inositol were of biotype C. Arabinose, dulcitol, erythritol, galactose, lactose, raffinose, rhamnose, and xylose were not utilized by any strain.

Ninety-eight strains hydrolyzed urea, 98 hydrolyzed allantoin, and 84 hydrolyzed acetamide. Other amides hydrolyzed were malonamide (eight strains), succinamide (three strains), and benzamine (one strain). The hydrolysis of isonicotinamide and pyrazinamide was extremely variable quantitatively and not readily reproducible, but almost all strains hydrolyzed these compounds to some degree. None of the strains hydrolyzed nicotinamide or salicylamide. Cytosine was hydrolyzed by all strains but, in the case of isonicotinamide and pyrazinamide, there was marked quantitative variation. Ten strains possessed strong thymine and uracil hydrolyase activity, whereas the other strains showed no activity in this respect.

Aminoglycoside resistance. All strains were sensitive to gentamicin (10 µg/disk), with zone sizes of 12 to 27 mm. Ninety-six strains were resistant to the 10 µg of streptomycin per disk, and four were sensitive, with zone sizes of 24 ± 1 mm. Ninety-two strains were sensitive to neomycin (10 µg/disk), with zone sizes of 12 to...
<table>
<thead>
<tr>
<th>Collection no.</th>
<th>Original designation(a)</th>
<th>Source</th>
<th>Year</th>
<th>ImmunoDiffusion serotype</th>
<th>Lipid type</th>
<th>Colonial morphology</th>
<th>Growth at 42°C</th>
<th>Resistance to Streptomycin and Isoniazid</th>
<th>Hydrolysis of amidasec</th>
<th>Hydrolysis of thiolate and zanol</th>
<th>Acellulase (3 day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NCTC 8573</td>
<td>Abscess</td>
<td>1954</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>NCTC 2006</td>
<td>Terrapin</td>
<td>1925</td>
<td>IV</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>PGH H.</td>
<td>Sputum</td>
<td>1964</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>PGH soil</td>
<td>Soil</td>
<td>1964</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>PGH K.</td>
<td>Sputum</td>
<td>1956</td>
<td>IV</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R R C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>33</td>
<td>PGH C.U.</td>
<td>Abscess</td>
<td>1958</td>
<td>IV</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R R C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>45</td>
<td>NCTC 10395</td>
<td>Abscess</td>
<td>1938</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>49</td>
<td>NCTC 10264</td>
<td>Bronchial aspirate</td>
<td>1962</td>
<td>V</td>
<td>P</td>
<td>R1, R2</td>
<td>-</td>
<td>R S B</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>79</td>
<td>NCTC 1542</td>
<td>Fish</td>
<td>1923</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>80</td>
<td>NCTC 2291</td>
<td>Fish (halibut)</td>
<td>1927</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>81</td>
<td>NCTC 2891</td>
<td>Frog</td>
<td>1907</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>82</td>
<td>NCTC 3631</td>
<td>Cow</td>
<td>1924</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>83</td>
<td>NCTC 8697</td>
<td>Abscess</td>
<td>1958</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>90</td>
<td>PGH J.C.</td>
<td>Abscess</td>
<td>1957</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>91</td>
<td>PGH R.W.</td>
<td>Abscess</td>
<td>1959</td>
<td>VI</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>S S B</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>92</td>
<td>PGH E.K.</td>
<td>Sputum</td>
<td>1965</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>108</td>
<td>16575 PC</td>
<td>Sputum</td>
<td>1965-67</td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R S C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>109</td>
<td>18519 PC</td>
<td>Sputum</td>
<td>1965-67</td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R S C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>110</td>
<td>20459 PC</td>
<td>Sputum</td>
<td>1965-67</td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R S C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>111</td>
<td>35998 PC</td>
<td>Sputum</td>
<td>1965-67</td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R S C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>112</td>
<td>37030 PC</td>
<td>Sputum</td>
<td>1965-67</td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R S C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>113</td>
<td>37379 PC</td>
<td>Sputum</td>
<td>1965-67</td>
<td>IV</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R S C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>404</td>
<td>480</td>
<td>Abscess</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>431</td>
<td>ATCC 6841</td>
<td>Abscess</td>
<td>1938</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>443</td>
<td>STH H.F.</td>
<td>Sputum</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>487</td>
<td>750</td>
<td>Abscess</td>
<td>1969</td>
<td>III</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R R C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>490</td>
<td>1342</td>
<td>Abscess</td>
<td>1970</td>
<td>I</td>
<td>F</td>
<td>R</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>491</td>
<td>Mx491170</td>
<td>Urine</td>
<td>1970</td>
<td>I</td>
<td>F</td>
<td>R</td>
<td>+</td>
<td>R S A</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>576</td>
<td>IMT 2076</td>
<td>Contaminated media</td>
<td>Recent</td>
<td>I</td>
<td>P</td>
<td>R1, R2</td>
<td>-</td>
<td>R S B</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>577</td>
<td>IMT 2042</td>
<td>Contaminated media</td>
<td>Recent</td>
<td>II</td>
<td>P</td>
<td>R1, R2</td>
<td>-</td>
<td>R S B</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>No.</td>
<td>ATCC No.</td>
<td>Isolation Site</td>
<td>Source</td>
<td>Method</td>
<td>Temp.</td>
<td>Result 1</td>
<td>Result 2</td>
<td>Result 3</td>
<td>Result 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>599</td>
<td>ATCC 19542</td>
<td>Cow</td>
<td>?</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>ATCC 23012</td>
<td>?</td>
<td>?</td>
<td>I</td>
<td>F</td>
<td>R1</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>629</td>
<td>ATCC 23020</td>
<td>Human</td>
<td>?</td>
<td>V</td>
<td>P</td>
<td>R1</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>ATCC 23021</td>
<td>Human</td>
<td>?</td>
<td>V</td>
<td>P</td>
<td>R1</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>ATCC 23023</td>
<td>?</td>
<td>?</td>
<td>V</td>
<td>P</td>
<td>R1</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>ATCC 23026</td>
<td>?</td>
<td>?</td>
<td>V</td>
<td>P</td>
<td>R2</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>638</td>
<td>ATCC 23029</td>
<td>?</td>
<td>?</td>
<td>I</td>
<td>F'</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>ATCC 23031</td>
<td>Human</td>
<td>?</td>
<td>I</td>
<td>N</td>
<td>R1</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>ATCC 23036</td>
<td>Human</td>
<td>?</td>
<td>V</td>
<td>N</td>
<td>R2</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>ATCC 23041</td>
<td>Abscess</td>
<td>?</td>
<td>IV</td>
<td>P</td>
<td>S</td>
<td>-</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>652</td>
<td>ATCC 23043</td>
<td>Soil</td>
<td>?</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>656</td>
<td>ATCC 23047</td>
<td>Human</td>
<td>?</td>
<td>V</td>
<td>N</td>
<td>R2</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>657</td>
<td>ATCC 23048</td>
<td>?</td>
<td>?</td>
<td>I</td>
<td>N</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>675</td>
<td>IMT 800</td>
<td>Abscess</td>
<td>Recent</td>
<td>V</td>
<td>P</td>
<td>R1, R2</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>676</td>
<td>IMT 1811</td>
<td>Abscess</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>677</td>
<td>IMT 1812</td>
<td>Abscess</td>
<td>Recent</td>
<td>III</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>678</td>
<td>IMT 1838</td>
<td>Zoo aquarium</td>
<td>Recent</td>
<td>V</td>
<td>P</td>
<td>R1</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>679</td>
<td>IMT 1900</td>
<td>Abscess</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>IMT 1934</td>
<td>Contaminated</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>681</td>
<td>IMT 2040</td>
<td>Contaminated</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>799</td>
<td>SS 19</td>
<td>Sputum</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>SS 20</td>
<td>Sputum</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>SS 31</td>
<td>Gastric washings</td>
<td>Recent</td>
<td>V</td>
<td>N</td>
<td>R1</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>806</td>
<td>SS 928</td>
<td>Frog</td>
<td>?</td>
<td>V</td>
<td>N</td>
<td>R1</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>814</td>
<td>Mx 814</td>
<td>Myocardial abscess</td>
<td>1972</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>817</td>
<td>30650 PL</td>
<td>Sputum</td>
<td>1972-73</td>
<td>V</td>
<td>P</td>
<td>R1</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>32343 PL</td>
<td>Abscess, chest wall</td>
<td>1972-73</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>824</td>
<td>32211 PL</td>
<td>Sputum</td>
<td>1972-73</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>830</td>
<td>32687 PL</td>
<td>Urine</td>
<td>1972-73</td>
<td>V</td>
<td>P</td>
<td>R2</td>
<td>-</td>
<td>R</td>
<td>S</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>843</td>
<td>SS 516</td>
<td>Cow</td>
<td>?</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>844</td>
<td>SS 927</td>
<td>Same as no. 431</td>
<td></td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>862</td>
<td>C.U.4</td>
<td>IV</td>
<td>P</td>
<td>S</td>
<td>+</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Collection no.</td>
<td>Original designation(^a)</td>
<td>Source</td>
<td>Year</td>
<td>Immunodiffusion serotype</td>
<td>Lipid type(^b)</td>
<td>Colonial morphology</td>
<td>Growth at 42°C</td>
<td>Resistance to Streptomycin</td>
<td>Kanamycin</td>
<td>Neomycin</td>
<td>Biotype</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>--------</td>
<td>------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>868</td>
<td>M. minetti</td>
<td>Same as no. 82</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>–</td>
</tr>
<tr>
<td>870</td>
<td>T 120</td>
<td>Soil</td>
<td>Recent</td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>S</td>
<td>S</td>
<td>A</td>
<td>–</td>
</tr>
<tr>
<td>R35</td>
<td></td>
<td>Grass, Lake Victoria</td>
<td>Recent isolates from Uganda 1972-1973</td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R46</td>
<td></td>
<td>Mud, Lango</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R47</td>
<td></td>
<td>Mud, Lango</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R49</td>
<td></td>
<td>Mud, Lango</td>
<td></td>
<td>VII</td>
<td>P'</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R50</td>
<td></td>
<td>Mud, Bunyoro</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R70</td>
<td></td>
<td>Mud, E. Mengo</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R71</td>
<td></td>
<td>Mud, Lango</td>
<td></td>
<td>VII</td>
<td>P'</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R80</td>
<td></td>
<td>Mud, Bunyoro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R86</td>
<td></td>
<td>Mud, Bunyoro</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R105</td>
<td></td>
<td>Mud, Ankole</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R106</td>
<td></td>
<td>Injection abscess, Kampala</td>
<td></td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>–</td>
</tr>
<tr>
<td>R111</td>
<td></td>
<td>Injection abscess, Kampala</td>
<td></td>
<td>I</td>
<td>F</td>
<td>R2</td>
<td>+</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>–</td>
</tr>
<tr>
<td>R160</td>
<td></td>
<td>Mud, Lango</td>
<td></td>
<td>II</td>
<td>P'</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R166</td>
<td></td>
<td>Mud, Bunyoro</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R173</td>
<td></td>
<td>Mud, Lango</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R243</td>
<td></td>
<td>Mud, Lango</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R248</td>
<td></td>
<td>Grass, Bunyoro</td>
<td></td>
<td>II</td>
<td>P</td>
<td>R1</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R261</td>
<td></td>
<td>Mud, Bunyoro</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R269</td>
<td></td>
<td>Grass, Bunyoro</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R275</td>
<td></td>
<td>Mud, Bunyoro</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R301</td>
<td></td>
<td>Grass, Near Kasese</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>R303</td>
<td></td>
<td>Grass, Near Kasese</td>
<td></td>
<td>II</td>
<td>P</td>
<td>S</td>
<td>–</td>
<td>R</td>
<td>S</td>
<td>C</td>
<td>–</td>
</tr>
</tbody>
</table>

\(^a\) Collection numbers

\(^b\) Lipid type: F = fatty, P = polar

\(^c\) Hydrolysis of amides: ++ = strong, + = moderate, – = weak

Table 1—continued
32 mm, and to kanamycin (30 \mu g/disk), with zone sizes of 15 to 34 mm; the other eight strains were resistant to both antibiotics.

Lipid chromatography. Two main lipid patterns were observed corresponding to the F (Fortuitum) and P (Peregrinum) patterns described by Jenkins et al. (16). Fifty-four strains were of the P type, 38 were of the F type, and 8 showed no specific lipid pattern. Three of the F types showed minor variations: two had an extra orange spot (F''), and one had an extra sky-blue spot (F''').

Immunodiffusion serology. As described in previous studies (29, 31), the precipitation lines were divisible into three groups: those shared with all other mycobacteria (group i antigens), those shared with other rapid growers (group iii), and species-specific antigens (group iv). In this study, nine group iv antigens were observed, but no strain possessed more than six. Three of these antigens were present in each of the 100 strains studied. On the basis of the variable possession of the other six antigens, seven serotypes were determined, five of which have been described previously (12, 18, 24). The use of antisera to serotypes III and IV has confirmed the antigenic structure of serotype IV but has shown that the serotype III strains possess an extra antigen peculiar to themselves. Two additional types, VI and VII, were determined; these contained one and two strains, respectively. Their antigenic structure has been confirmed by the use of type-specific antisera. The antigenic structures of the seven serotypes are shown in Fig. 1.

Thirty-eight strains were of serotype I, 35 were of serotype II, 2 were of serotype III, 7 were of serotype IV, 13 were of serotype V, 1 was of serotype VI, and 2 were of serotype VII.

The cotype strains of *M. fortuitum* and *M. ranae*, and a strain referred to as *M. minetti*, were of serotype I, and the type strains of *M. fortuitum*.
Sero-

type

II

III

IV

V

VI

VII

Total

111

11

I

N

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R
change in immunodiffusion serotype or biotype and is thus analogous to the simple smooth-to-rough variation that occurs in many other bacterial genera.

The major patterns of intraspecific variation are shown in Table 4 according to serotype. Strains of serotypes III and IV cannot be distinguished from each other culturally or biochemically but differ from all other types in giving the most positive reactions. In contrast, strains of serotypes I and V in particular differ from the biotype C strains (serotypes II, III, and IV) by the lack of several characteristics. In a previous study (12), it was shown that strains of serotypes I and V could be derived at low frequency from a genetically more complete serotype II strain. As this change was irreversible, it was concluded that a major mutation, probably deletional, had occurred. It was postulated that such mutation could play an important role in the origin of intraspecific variants in this and other mycobacterial species. Such a concept would also explain the occurrence of forms intermediate between the major variants which could arise by small deletions or point mutations. For example, one serotype IV strain was sensitive to kanamycin and neomycin, a serotype II strain failed to utilize inositol, and another failed to hydrolyze acetamide.

Although a large number of strains of diverse geographical origin have been examined, it is probable that additional variants exist, some of which may be of limited geographical distribution. The strains of serotypes I, II, IV, and V studied were from widely distributed areas throughout the world, but the two serotype III strains were isolated near Kinshasa, Zaire, and the two type VII strains came from mud in the Lango district of Uganda. Some of the minor variations within the species may be associated with lysogeny. Despite the extent of variation within *M. fortuitum*, there are, of course, many properties constant for this species so that the strains form a distinct cluster on numerical analysis (18). Although there are some points of similarity between serotype I strains of *M. fortuitum* and strains of *M. chelonei*, there is no reason for confusion to occur. Both groups of strains utilize glucose, mannose, and trehalose at 28°C, but strains of *M. chelonei* are unable to do so at 40°C; in addition, the latter are unable to reduce nitrate or hydrolyze allantoin, do not grow at 42°C, differ in colonial morphology, and possess a different lipid pattern. On immunodiffusion analysis, they bear no closer relationship to *M. fortuitum* than to any other rapidly growing mycobacterium (32).

The strains analyzed in this study were isolated from humans and other animals and from environmental sources. Those isolated from human sources were divisible into two groups: those clearly associated with disease, i.e., the only pathogen isolated from abscesses, and those isolated from sputum or urine with no proven association with disease. Table 5 shows the distribution of strains according to these groups and to the serotypes. Strains of serotype I are most commonly associated with disease, whereas no definite cases of disease are attributed to strains of serotype II. It is of some relevance that the great majority of strains isolated from the Ugandan environment were of serotype II, whereas two strains isolated from injection abscesses from the same geographical area were both of serotype I. It is also noteworthy that the type strains are all of either serotype I or V, probably because until recently the great majority of mycobacteria in culture collections were isolated from clinical material rather than from the environment.

We do not consider that all the variants described merit subspecific status. However, it

Table 4. Summarized correlation of the variable characteristics of Mycobacterium fortuitum

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Biotype</th>
<th>Colony morphology</th>
<th>Lipid type</th>
<th>Growth at 42°C</th>
<th>Resistance to neomycin and kanamycin</th>
<th>Hydrolysis of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thymine</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>R2</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>C</td>
<td>S</td>
<td>P</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>C</td>
<td>S</td>
<td>P</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IV</td>
<td>C</td>
<td>S</td>
<td>P</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>V</td>
<td>B</td>
<td>R1, R2</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>B</td>
<td>S</td>
<td>F^c</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>VII</td>
<td>B</td>
<td>S, R2</td>
<td>F^c</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^a Biotypes of Bönick (1966).

^b P, Peregrinum type; F, Fortuitum type.

^c F^' and F" strains.
has been suggested by Pattyn et al. (24) that the names *M. fortuitum* subsp. *fortuitum* and *M. fortuitum* subsp. *giae* (*M. peregrinum*) be applied to strains of serotypes I and V, respectively. In view of the close correlation between the biotypes of Bönicke and other variable properties, this typing system may be used to advantage as an alternative, with division of the biotype C strains into those sensitive and those resistant to neomycin and kanamycin. Additional methods for the subdivision of *M. fortuitum* are available. The use of agglutination serology and delayed hypersensitivity reactions in guinea pigs have been described previously (24). The species may also be subdivided by means of bacteriophage typing (13).

Now that *M. fortuitum* is the correct name for a well-defined mycobacterial species, it is hoped that in the future it will be used as such and not as a broad term for any rapidly growing, nonchromogenic mycobacterium isolated from clinical material, which has frequently been the case in the past.

ACKNOWLEDGMENTS

We are grateful to the many bacteriologists who have supplied bacterial strains. We are especially grateful to Roger C. Paul, who supplied the isolates from Uganda.

REPRINT REQUESTS

Address reprint requests to: Dr. J. M. Grange, The School of Pathology, The Middlesex Hospital Medical School, Riding House Street, London, W1P 7LD, England.

LITERATURE CITED

TABLE 5. Origin of the strains of *Mycobacterium fortuitum* according to immunodiffusion serotype

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Disease</th>
<th>Clinical material</th>
<th>Environment</th>
<th>Contaminated media</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human</td>
<td>Animal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>14</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>5</td>
<td>31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Table formatted for clarity]