1887

Abstract

Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in and and the implications that acquisition of additional copper resistance genes may have in these pathogens.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/S006818/1)
    • Principle Award Recipient: JulieA. Morrissey
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001162
2022-04-11
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001162.html?itemId=/content/journal/micro/10.1099/mic.0.001162&mimeType=html&fmt=ahah

References

  1. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984; 219:1–14 [View Article] [PubMed]
    [Google Scholar]
  2. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med 1995; 18:1033–1077 [View Article] [PubMed]
    [Google Scholar]
  3. Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP et al. Hydroxyl radicals and DNA base damage. Mutat Res 1999; 424:9–21 [View Article] [PubMed]
    [Google Scholar]
  4. Sies H, Menck CF. Singlet oxygen induced DNA damage. Mutat Res 1992; 275:367–375 [View Article] [PubMed]
    [Google Scholar]
  5. Humphries KM, Szweda LI. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 1998; 37:15835–15841 [View Article] [PubMed]
    [Google Scholar]
  6. Kimura T, Nishioka H. Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat Res 1997; 389:237–242 [View Article] [PubMed]
    [Google Scholar]
  7. Baker J, Sengupta M, Jayaswal RK, Morrissey JA. The Staphylococcus aureus CsoR regulates both chromosomal and plasmid-encoded copper resistance mechanisms. Environ Microbiol 2011; 13:2495–2507 [View Article] [PubMed]
    [Google Scholar]
  8. Macomber L, Rensing C, Imlay JA. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 2007; 189:1616–1626 [View Article] [PubMed]
    [Google Scholar]
  9. Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 2009; 106:8344–8349 [View Article] [PubMed]
    [Google Scholar]
  10. Tan G, Cheng Z, Pang Y, Landry AP, Li J et al. Copper binding in IscA inhibits iron-sulphur cluster assembly in Escherichia coli. Mol Microbiol 2014; 93:629–644 [View Article] [PubMed]
    [Google Scholar]
  11. Foster AW, Dainty SJ, Patterson CJ, Pohl E, Blackburn H et al. A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae. Mol Microbiol 2014; 93:317–330 [View Article] [PubMed]
    [Google Scholar]
  12. Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA et al. Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J Bacteriol 2010; 192:2512–2524 [View Article] [PubMed]
    [Google Scholar]
  13. Tarrant E, P Riboldi G, McIlvin MR, Stevenson J, Barwinska-Sendra A et al. Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism. Metallomics 2019; 11:183–200 [View Article] [PubMed]
    [Google Scholar]
  14. Beveridge SJ, Garrett IR, Whitehouse MW, Vernon-Roberts B, Brooks PM. Biodistribution of 64Cu in inflamed rats following administration of two anti-inflammatory copper complexes. Agents Actions 1985; 17:104–111 [View Article] [PubMed]
    [Google Scholar]
  15. Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 2008; 275:3249–3277 [View Article] [PubMed]
    [Google Scholar]
  16. Wagner D, Maser J, Lai B, Cai Z, Barry CE 3rd et al. Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. J Immunol 2005; 174:1491–1500 [View Article] [PubMed]
    [Google Scholar]
  17. Achard MES, Stafford SL, Bokil NJ, Chartres J, Bernhardt PV et al. Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J 2012; 444:51–57 [View Article] [PubMed]
    [Google Scholar]
  18. White C, Lee J, Kambe T, Fritsche K, Petris MJ. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 2009; 284:33949–33956 [View Article] [PubMed]
    [Google Scholar]
  19. Johnson MDL, Kehl-Fie TE, Klein R, Kelly J, Burnham C et al. Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance. Infect Immun 2015; 83:1684–1694 [View Article] [PubMed]
    [Google Scholar]
  20. Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S et al. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2011; 108:1621–1626 [View Article] [PubMed]
    [Google Scholar]
  21. Neyrolles O, Wolschendorf F, Mitra A, Niederweis M. Mycobacteria, metals, and the macrophage. Immunol Rev 2015; 264:249–263 [View Article] [PubMed]
    [Google Scholar]
  22. Nairz M, Theurl I, Ludwiczek S, Theurl M, Mair SM et al. The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium. Cell Microbiol 2007; 9:2126–2140 [View Article] [PubMed]
    [Google Scholar]
  23. Shafeeq S, Yesilkaya H, Kloosterman TG, Narayanan G, Wandel M et al. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol 2011; 81:1255–1270 [View Article] [PubMed]
    [Google Scholar]
  24. Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol 2012; 3:411 [View Article] [PubMed]
    [Google Scholar]
  25. Li CX, Gleason JE, Zhang SX, Bruno VM, Cormack BP et al. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc Natl Acad Sci U S A 2015; 112:E5336–42 [View Article] [PubMed]
    [Google Scholar]
  26. Ding C, Festa RA, Chen Y-L, Espart A, Palacios Ò et al. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 2013; 13:265–276 [View Article] [PubMed]
    [Google Scholar]
  27. Cernat RI, Mihaescu T, Vornicu M, Vione D, Olariu RI et al. Serum trace metal and ceruloplasmin variability in individuals treated for pulmonary tuberculosis. Int J Tuberc Lung Dis 2011; 15:1239–1245 [View Article] [PubMed]
    [Google Scholar]
  28. Besold AN, Culbertson EM, Culotta VC. The Yin and Yang of copper during infection. J Biol Inorg Chem 2016; 21:137–144 [View Article] [PubMed]
    [Google Scholar]
  29. Masindi V, Muedi KL. Environmental Contamination by Heavy Metals Aglan, France: Heavy Metals; IntechOpen; 2018 pp 115–133
    [Google Scholar]
  30. Jordão CP, Pereira JC, Brune W, Pereira JL, Braathen PC. Heavy metal dispersion from industrial wastes in the Vale Do Aço, Minas Gerais, Brazil. Environmental Technology 1996; 17:489–500 [View Article]
    [Google Scholar]
  31. Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 2010; 174:113–121 [View Article] [PubMed]
    [Google Scholar]
  32. Cazorla FM, Arrebola E, Sesma A, Pérez-García A, Codina JC et al. Copper resistance in Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids. Phytopathology 2002; 92:909–916 [View Article] [PubMed]
    [Google Scholar]
  33. Okonkwo AC, Ku PK, Miller ER, Keahey KK, Ullrey DE. Copper requirement of baby pigs fed purified diets. J Nutr 1979; 109:939–948 [View Article] [PubMed]
    [Google Scholar]
  34. Stahly TS, Cromwell GL, Monegue HJ. Effects of the dietary inclusion of copper and(or) antibiotics on the performance of weanling pigs. J Anim Sci 1980; 51:1347–1351 [View Article] [PubMed]
    [Google Scholar]
  35. Højberg O, Canibe N, Poulsen HD, Hedemann MS, Jensen BB. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol 2005; 71:2267–2277 [View Article] [PubMed]
    [Google Scholar]
  36. Pérez VG, Waguespack AM, Bidner TD, Southern LL, Fakler TM et al. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J Anim Sci 2011; 89:414–425 [View Article] [PubMed]
    [Google Scholar]
  37. Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos LV et al. Non-antibiotic feed additives in diets for pigs: A review. Anim Nutr 2018; 4:113–125 [View Article] [PubMed]
    [Google Scholar]
  38. Amachawadi RG, Scott HM, Aperce C, Vinasco J, Drouillard JS et al. Effects of in-feed copper and tylosin supplementations on copper and antimicrobial resistance in faecal enterococci of feedlot cattle. J Appl Microbiol 2015; 118:1287–1297 [View Article] [PubMed]
    [Google Scholar]
  39. Amachawadi RG, Shelton NW, Shi X, Vinasco J, Dritz SS et al. Selection of fecal enterococci exhibiting tcrB-mediated copper resistance in pigs fed diets supplemented with copper. Appl Environ Microbiol 2011; 77:5597–5603 [View Article] [PubMed]
    [Google Scholar]
  40. Berg J, Tom-Petersen A, Nybroe O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett Appl Microbiol 2005; 40:146–151 [View Article] [PubMed]
    [Google Scholar]
  41. Parsons C, Costolo B, Brown P, Kathariou S. Penicillin-binding protein encoded by pbp4 is involved in mediating copper stress in Listeria monocytogenes. FEMS Microbiol Lett 2017; 364:20 [View Article] [PubMed]
    [Google Scholar]
  42. van Belkum A, Melles DC, Nouwen J, van Leeuwen WB, van Wamel W et al. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect Genet Evol 2009; 9:32–47 [View Article] [PubMed]
    [Google Scholar]
  43. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603–661 [View Article]
    [Google Scholar]
  44. Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529–543 [View Article] [PubMed]
    [Google Scholar]
  45. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44:1549–1555 [View Article] [PubMed]
    [Google Scholar]
  46. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019; 17:203–218 [View Article] [PubMed]
    [Google Scholar]
  47. Sitthisak S, Knutsson L, Webb JW, Jayaswal RK. Molecular characterization of the copper transport system in Staphylococcus aureus. Microbiology (Reading) 2007; 153:4274–4283 [View Article] [PubMed]
    [Google Scholar]
  48. Multhaup G, Strausak D, Bissig K-D, Solioz M. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 2001; 288:172–177 [View Article] [PubMed]
    [Google Scholar]
  49. Grossoehme N, Kehl-Fie TE, Ma Z, Adams KW, Cowart DM et al. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus. J Biol Chem 2011; 286:13522–13531 [View Article] [PubMed]
    [Google Scholar]
  50. Tan BG, Vijgenboom E, Worrall JAR. Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans. Nucleic Acids Res 2014; 42:1326–1340 [View Article] [PubMed]
    [Google Scholar]
  51. Chang F-MJ, Coyne HJ, Cubillas C, Vinuesa P, Fang X et al. Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR). J Biol Chem 2014; 289:19204–19217 [View Article] [PubMed]
    [Google Scholar]
  52. Purves J, Thomas J, Riboldi GP, Zapotoczna M, Tarrant E et al. A horizontally gene transferred copper resistance locus confers hyper-resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages. Environ Microbiol 2018; 20:1576–1589 [View Article] [PubMed]
    [Google Scholar]
  53. Rosario-Cruz Z, Eletsky A, Daigham NS, Al-Tameemi H, Swapna GVT et al. The copBL operon protects Staphylococcus aureus from copper toxicity: CopL is an extracellular membrane-associated copper-binding protein. J Biol Chem 2019; 294:4027–4044 [View Article] [PubMed]
    [Google Scholar]
  54. Zapotoczna M, Riboldi GP, Moustafa AM, Dickson E, Narechania A et al. Mobile-genetic-element-encoded hypertolerance to copper protects Staphylococcus aureus from killing by host phagocytes. mBio 2018; 9:e00550-18 [View Article] [PubMed]
    [Google Scholar]
  55. Purohit R, Ross MO, Batelu S et al. Cu+-specific copb transporter: revising P1B-type atpase classification. Proc Natl Acad Sci 2018; 115:2108–2113 [View Article]
    [Google Scholar]
  56. Jamrozy D, Coll F, Mather AE, Harris SR, Harrison EM et al. Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics 2017; 18:1–12 [View Article] [PubMed]
    [Google Scholar]
  57. Sitthisak S, Howieson K, Amezola C, Jayaswal RK. Characterization of a multicopper oxidase gene from Staphylococcus aureus. Appl Environ Microbiol 2005; 71:5650–5653 [View Article] [PubMed]
    [Google Scholar]
  58. Peng H, Liu D, Ma Y, Gao W. Comparison of community- and healthcare-associated methicillin-resistant Staphylococcus aureus isolates at a Chinese tertiary hospital, 2012-2017. Sci Rep 2018; 8:17916 [View Article] [PubMed]
    [Google Scholar]
  59. David MZ, Mennella C, Mansour M, Boyle-Vavra S, Daum RS. Predominance of methicillin-resistant Staphylococcus aureus among pathogens causing skin and soft tissue infections in a large urban jail: risk factors and recurrence rates. J Clin Microbiol 2008; 46:3222–3227 [View Article] [PubMed]
    [Google Scholar]
  60. Control CfD, Prevention Methicillin-resistant Staphylococcus aureus skin or soft tissue infections in a state prison--mississippi, 2000. MMWR Morb Mortal Wkly Rep 2001; 50:42–919
    [Google Scholar]
  61. Control CfD, Prevention Methicillin-resistant Staphylococcus aureus infections among competitive sports participants--Colorado, Indiana, Pennsylvania, and Los Angeles county, 2000-2003. MMWR Morb Mortal Wkly Rep 2003; 52:33–793
    [Google Scholar]
  62. Tenover FC, Goering RV. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother 2009; 64:441–446 [View Article] [PubMed]
    [Google Scholar]
  63. Witte W, Braulke C, Strommenger B. Community-associated methicillin-resistant Staphylococcus aureus ST8 (“USA300”) in an HIV-positive patient in Cologne, Germany, February 2008. Eurosurveillance 2008; 13:5–6 [View Article]
    [Google Scholar]
  64. Valentini P, Parisi G, Monaco M, Crea F, Spanu T et al. An uncommon presentation for a severe invasive infection due to methicillin-resistant Staphylococcus aureus clone USA300 in Italy: a case report. Ann Clin Microbiol Antimicrob 2008; 7:11 [View Article] [PubMed]
    [Google Scholar]
  65. Planet PJ, Diaz L, Kolokotronis S-O, Narechania A, Reyes J et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 Infection in North and South America. J Infect Dis 2015; 212:1874–1882 [View Article] [PubMed]
    [Google Scholar]
  66. Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ et al. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 2013; 13:100–107 [View Article] [PubMed]
    [Google Scholar]
  67. Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A et al. Comparative analysis of plasmids in the genus Listeria. PLoS One 2010; 5:e12511 [View Article] [PubMed]
    [Google Scholar]
  68. Hingston P, Brenner T, Truelstrup Hansen L, Wang S. Comparative analysis of Listeria monocytogenes plasmids and expression levels of plasmid-encoded genes during growth under salt and acid stress conditions. Toxins (Basel) 2019; 11:E426 [View Article] [PubMed]
    [Google Scholar]
  69. Parsons C, Lee S, Kathariou S. Heavy metal resistance determinants of the foodborne pathogen Listeria monocytogenes. Genes (Basel) 2018; 10:E11 [View Article] [PubMed]
    [Google Scholar]
  70. Pöntinen A, Aalto-Araneda M, Lindström M, Korkeala H. Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in Listeria monocytogenes. mSphere 2017; 2:e00364-17 [View Article] [PubMed]
    [Google Scholar]
  71. Lee S, Rakic-Martinez M, Graves LM, Ward TJ, Siletzky RM et al. Genetic determinants for cadmium and arsenic resistance among Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis patients. Appl Environ Microbiol 2013; 79:2471–2476 [View Article] [PubMed]
    [Google Scholar]
  72. Ratani SS, Siletzky RM, Dutta V, Yildirim S, Osborne JA et al. Heavy metal and disinfectant resistance of Listeria monocytogenes from foods and food processing plants. Appl Environ Microbiol 2012; 78:6938–6945 [View Article] [PubMed]
    [Google Scholar]
  73. Marcus R, Hurd S, Mank L, Mshar P, Phan Q et al. Chicken salad as the source of a case of Listeria monocytogenes infection in Connecticut. J Food Prot 2009; 72:2602–2606 [View Article] [PubMed]
    [Google Scholar]
  74. Hamon M, Bierne H, Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 2006; 4:423–434 [View Article] [PubMed]
    [Google Scholar]
  75. Nyfeldt A. Etiologie de la mononucleose infectieuse. CR Soc Biol 1929; 101:590–591
    [Google Scholar]
  76. Murray EGD, Webb RA, Swann MBR. A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J Pathol 1926; 29:407–439 [View Article]
    [Google Scholar]
  77. Schlech WF 3rd, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV et al. Epidemic listeriosis--evidence for transmission by food. N Engl J Med 1983; 308:203–206 [View Article] [PubMed]
    [Google Scholar]
  78. PHE (Public Health England) Listeriosis in England and Wales, Summary for 2017. Data from the national enhanced surveillance system for Listeria monocytogenes; 2017 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/765214/listeriosis_in_england_and_wales_summary_for_2017.pdf
  79. Hardy J, Margolis JJ, Contag CH. Induced biliary excretion of Listeria monocytogenes. Infect Immun 2006; 74:1819–1827 [View Article] [PubMed]
    [Google Scholar]
  80. Corbett D, Schuler S, Glenn S, Andrew PW, Cavet JS et al. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Mol Microbiol 2011; 81:457–472 [View Article] [PubMed]
    [Google Scholar]
  81. Linke K, Rückerl I, Brugger K, Karpiskova R, Walland J et al. Reservoirs of listeria species in three environmental ecosystems. Appl Environ Microbiol 2014; 80:5583–5592 [View Article] [PubMed]
    [Google Scholar]
  82. Zieliński W, Korzeniewska E, Harnisz M, Hubeny J, Buta M et al. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ Int 2020; 143:105914 [View Article] [PubMed]
    [Google Scholar]
  83. Silva V, Caniça M, Capelo JL, Igrejas G, Poeta P. Diversity and genetic lineages of environmental staphylococci: a surface water overview. FEMS Microbiol Ecol 2020; 96:12 [View Article] [PubMed]
    [Google Scholar]
  84. Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A. Plasmids in Listeria monocytogenes in relation to cadmium resistance. Appl Environ Microbiol 1992; 58:3183–3186 [View Article] [PubMed]
    [Google Scholar]
  85. McLauchlin J, Hampton MD, Shah S, Threlfall EJ, Wieneke AA et al. Subtyping of Listeria monocytogenes on the basis of plasmid profiles and arsenic and cadmium susceptibility. J Appl Microbiol 1997; 83:381–388 [View Article] [PubMed]
    [Google Scholar]
  86. Naditz AL, Dzieciol M, Wagner M, Schmitz-Esser S. Plasmids contribute to food processing environment-associated stress survival in three Listeria monocytogenes ST121, ST8, and ST5 strains. Int J Food Microbiol 2019; 299:39–46 [View Article] [PubMed]
    [Google Scholar]
  87. Centers for Disease Control and Prevention Multistate outbreak of listeriosis associated with Jensen Farms cantaloupe--United States, August-September 2011. MMWR Morb Mortal Wkly Rep 2011; 60:1357–1358
    [Google Scholar]
  88. Desai AN, Anyoha A, Madoff LC, Lassmann B. Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. Int J Infect Dis 2019; 84:48–53 [View Article] [PubMed]
    [Google Scholar]
  89. Chen Y, Burall LS, Luo Y, Timme R, Melka D et al. Listeria monocytogenes in stone fruits linked to a multistate outbreak: enumeration of cells and whole-genome sequencing. Appl Environ Microbiol 2016; 82:7030–7040 [View Article] [PubMed]
    [Google Scholar]
  90. Price R, Jayeola V, Niedermeyer J, Parsons C, Kathariou S. The Listeria monocytogenes key virulence determinants hly and prfA are involved in biofilm formation and aggregation but not colonization of fresh produce. Pathogens 2018; 7:E18 [View Article] [PubMed]
    [Google Scholar]
  91. Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 2014; 77:150–170 [View Article] [PubMed]
    [Google Scholar]
  92. Mullapudi S, Siletzky RM, Kathariou S. Heavy-metal and benzalkonium chloride resistance of Listeria monocytogenes isolates from the environment of turkey-processing plants. Appl Environ Microbiol 2008; 74:1464–1468 [View Article] [PubMed]
    [Google Scholar]
  93. Dutta V, Elhanafi D, Kathariou S. Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes. Appl Environ Microbiol 2013; 79:6067–6074 [View Article] [PubMed]
    [Google Scholar]
  94. Wagner D, Maser J, Moric I, Vogt S, Kern WV et al. Elemental analysis of the Mycobacterium avium phagosome in Balb/c mouse macrophages. Biochem Biophys Res Commun 2006; 344:1346–1351 [View Article] [PubMed]
    [Google Scholar]
  95. Mackaness GB. Cellular resistance to infection. J Exp Med 1962; 116:381–406 [View Article] [PubMed]
    [Google Scholar]
  96. Myers JT, Tsang AW, Swanson JA. Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J Immunol 2003; 171:5447–5453 [View Article] [PubMed]
    [Google Scholar]
  97. Baker J, Sitthisak S, Sengupta M, Johnson M, Jayaswal RK et al. Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation. Appl Environ Microbiol 2010; 76:150–160 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001162
Loading
/content/journal/micro/10.1099/mic.0.001162
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error