1887

Abstract

Lactic acid bacteria currently used extensively by the dairy industry have a superior tolerance towards short-chain alcohols, which makes them interesting targets for use in future bio-refineries. The mechanism underlying the alcohol tolerance of lactic acid bacteria has so far received little attention. In the present study, the physiological alcohol stress response of subsp. MG1363 towards the primary, even-chain alcohols ethanol, butanol and hexanol, was characterized. The alcohol tolerance of was found to be comparable to those reported for highly alcohol-resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the β-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to , high concentrations of butanol were cytotoxic, causing irreparable damages to the cell membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000441
2017-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/4/453.html?itemId=/content/journal/micro/10.1099/mic.0.000441&mimeType=html&fmt=ahah

References

  1. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 2008; 19:556–563 [View Article][PubMed]
    [Google Scholar]
  2. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C et al. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009; 11:262–273 [View Article][PubMed]
    [Google Scholar]
  3. Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008; 451:86–89 [View Article][PubMed]
    [Google Scholar]
  4. Vinuselvi P, Park JM, Lee JM, Oh K, Ghim C-M et al. Engineering microorganisms for biofuel production. Biofuels 2011; 2:153–166 [View Article]
    [Google Scholar]
  5. Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev 1986; 50:484–524[PubMed]
    [Google Scholar]
  6. Sardessai Y, Bhosle S. Tolerance of bacteria to organic solvents. Res Microbiol 2002; 153:263–268 [View Article][PubMed]
    [Google Scholar]
  7. Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 2010; 76:1935–1945 [View Article][PubMed]
    [Google Scholar]
  8. Ingram LO. Ethanol tolerance in bacteria. Crit Rev Biotechnol 1990; 9:305–319 [View Article][PubMed]
    [Google Scholar]
  9. Ingram LO. Adaptation of membrane lipids to alcohols. J Bacteriol 1976; 125:670–678[PubMed]
    [Google Scholar]
  10. Uchida K. Lipids of alcoholophilic lactobacilli II. Occurrence of polar lipids with unusually long acyl chains in Lactobacillus heterohiochii. BBA-Lipid Lipid Met 1974; 369:146–155 [View Article]
    [Google Scholar]
  11. Vermuë M, Sikkema J, Verheul A, Bakker R, Tramper J. Toxicity of homologous series of organic solvents for the Gram-positive bacteria Arthrobacter and Nocardia sp. and the Gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 1993; 42:747–758 [View Article][PubMed]
    [Google Scholar]
  12. Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 2010; 109:13–24 [View Article][PubMed]
    [Google Scholar]
  13. Bowles LK, Ellefson WL. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 1985; 50:1165–1170[PubMed]
    [Google Scholar]
  14. To TM, Grandvalet C, Tourdot-Maréchal R. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 2011; 77:3327–3334 [View Article][PubMed]
    [Google Scholar]
  15. Knoshaug EP, Zhang M. Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 2009; 153:13–20 [View Article][PubMed]
    [Google Scholar]
  16. Gold RS, Meagher MM, Hutkins R, Conway T. Ethanol tolerance and carbohydrate metabolism in lactobacilli. J Ind Microbiol 1992; 10:45–54 [View Article]
    [Google Scholar]
  17. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008; 10:295–304 [View Article][PubMed]
    [Google Scholar]
  18. Liu S, Qureshi N. How microbes tolerate ethanol and butanol. N Biotechnol 2009; 26:117–121 [View Article][PubMed]
    [Google Scholar]
  19. Uchida K. Alteration of the unsaturated to saturated ratio of fatty acids in bacterial lipids by alcohols. Agric Biol Chem 1975; 39:1515–1516
    [Google Scholar]
  20. Nordkvist M, Jensen NBS, Villadsen J. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: requirement of acetate to sustain growth under microaerobic conditions. Appl Environ Microbiol 2003; 69:3462–3468 [View Article]
    [Google Scholar]
  21. Larsen R, van Hijum SA, Martinussen J, Kuipers OP, Kok J. Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol 2008; 74:4768–4771 [View Article][PubMed]
    [Google Scholar]
  22. Kok J, Buist G, Zomer AL, van Hijum SA, Kuipers OP. Comparative and functional genomics of lactococci. FEMS Microbiol Rev 2005; 29:411–433 [View Article][PubMed]
    [Google Scholar]
  23. Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 2007; 189:3256–3270 [View Article][PubMed]
    [Google Scholar]
  24. Brøndsted L, Hammer K. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Appl Environ Microbiol 1999; 65:752–758[PubMed]
    [Google Scholar]
  25. Solem C, Jensen PR. Modulation of gene expression made easy. Appl Environ Microbiol 2002; 68:2397–2403 [View Article][PubMed]
    [Google Scholar]
  26. Solem C, Defoor E, Jensen PR, Martinussen J. Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol 2008; 74:4772–4775 [View Article][PubMed]
    [Google Scholar]
  27. Solem C, Dehli T, Jensen PR. Rewiring Lactococcus lactis for ethanol production. Appl Environ Microbiol 2013; 79:2512–2518 [View Article][PubMed]
    [Google Scholar]
  28. Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 1983; 154:1–9[PubMed]
    [Google Scholar]
  29. Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 1998; 64:82–87[PubMed]
    [Google Scholar]
  30. Jensen PR, Hammer K. Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 1993; 59:4363–4366[PubMed]
    [Google Scholar]
  31. Michelsen O, Cuesta-Dominguez A, Albrechtsen B, Jensen PR. Detection of bacteriophage-infected cells of Lactococcus lactis by using flow cytometry. Appl Environ Microbiol 2007; 73:7575–7581 [View Article][PubMed]
    [Google Scholar]
  32. Miller JH. Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972
    [Google Scholar]
  33. Ryssel M, Hviid AM, Dawish MS, Haaber J, Hammer K et al. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity. Microbiology 2014; 160:2551–2559 [View Article][PubMed]
    [Google Scholar]
  34. Chen J, Shen J, Ingvar Hellgren L, Ruhdal Jensen P, Solem C. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci Rep 2015; 5:14199 [View Article]
    [Google Scholar]
  35. Bunthof CJ, van den Braak S, Breeuwer P, Rombouts FM, Abee T. Rapid fluorescence assessment of the viability of stressed Lactococcus lactis. Appl Environ Microbiol 1999; 65:3681–3689[PubMed]
    [Google Scholar]
  36. Sträuber H, Müller S. Viability states of bacteria-specific mechanisms of selected probes. Cytometry Part A 2010; 77A:623–634 [View Article]
    [Google Scholar]
  37. Zotta T, Guidone A, Tremonte P, Parente E, Ricciardi A. A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria. World J Microbiol Biotechnol 2012; 28:919–927 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000441
Loading
/content/journal/micro/10.1099/mic.0.000441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error