1887

Abstract

is one of the leading nosocomial pathogens worldwide. Nosocomial infections caused by this organism are often hard to treat because of both the intrinsic resistance of the species (it has constitutive expression of AmpC -lactamase and efflux pumps, combined with a low permeability of the outer membrane), and its remarkable ability to acquire further resistance mechanisms to multiple groups of antimicrobial agents, including -lactams, aminoglycosides and fluoroquinolones. represents a phenomenon of bacterial resistance, since practically all known mechanisms of antimicrobial resistance can be seen in it: derepression of chromosomal AmpC cephalosporinase; production of plasmid or integron-mediated -lactamases from different molecular classes (carbenicillinases and extended-spectrum -lactamases belonging to class A, class D oxacillinases and class B carbapenem-hydrolysing enzymes); diminished outer membrane permeability (loss of OprD proteins); overexpression of active efflux systems with wide substrate profiles; synthesis of aminoglycoside-modifying enzymes (phosphoryltransferases, acetyltransferases and adenylyltransferases); and structural alterations of topoisomerases II and IV determining quinolone resistance. Worryingly, these mechanisms are often present simultaneously, thereby conferring multiresistant phenotypes. This review describes the known resistance mechanisms in to the most frequently administrated antipseudomonal antibiotics: -lactams, aminoglycosides and fluoroquinolones.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009142-0
2009-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/9/1133.html?itemId=/content/journal/jmm/10.1099/jmm.0.009142-0&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1980; The structure of β -lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331 [CrossRef]
    [Google Scholar]
  2. Aubert D., Poirel L., Chevalier J., Leotard S., Pages J. M., Nordmann P. 2001; Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa . Antimicrob Agents Chemother 45:1615–1620 [CrossRef]
    [Google Scholar]
  3. Aubert D., Girlich D., Naas T., Nagarajan S., Nordmann P. 2004; Functional and structural characterization of the genetic environment of an extended-spectrum β -lactamase bla VEB gene from a Pseudomanas aeruginosa isolate obtained in India. Antimicrob Agents Chemother 48:3284–3290 [CrossRef]
    [Google Scholar]
  4. Bagge N., Ciofu O., Hentzer M., Campbell J. I., Givskov M., Hoiby N. 2002; Constitutive high expression of chromosomal β -lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS 1669 ) located in ampD . Antimicrob Agents Chemother 46:3406–3411 [CrossRef]
    [Google Scholar]
  5. Bahar G., Mazzariol A., Koncan R., Mert A., Fontana R., Rossolini G. M., Cornaglia G. 2004; Detection of VIM-5 metallo- β -lactamase in a Pseudomonas aeruginosa clinical isolate from Turkey. J Antimicrob Chemother 54:282–283 [CrossRef]
    [Google Scholar]
  6. Bert F., Branger C., Lambert-Zechovsky N. 2002; Identification of PSE and OXA β -lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother 50:11–18 [CrossRef]
    [Google Scholar]
  7. Bert F., Ould-Hocine Z., Juvin M., Dubois V., Loncle-Provot V., Lefranc V., Quentin C., Lambert N., Arlet G. 2003; Evaluation of the Osiris Expert System for identification of β -lactam phenotypes in isolates of Pseudomonas aeruginosa . J Clin Microbiol 41:3712–3718 [CrossRef]
    [Google Scholar]
  8. Blanc D. S., Petignat C., Janin B., Bille J., Francioli P. 1998; Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. Clin Microbiol Infect 4:242–247 [CrossRef]
    [Google Scholar]
  9. Bogaerts P., Bauraing C., Deplano A., Glupczynski Y. 2007; Emergence and dissemination of BEL-1-producing Pseudomonas aeruginosa isolates in Belgium. Antimicrob Agents Chemother 51:1584–1585 [CrossRef]
    [Google Scholar]
  10. Bradford P. A. 2001; Extended-spectrum β -lactamases in the 21st Century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951 [CrossRef]
    [Google Scholar]
  11. Bryan L. E., Haraphongse R., Van den Elzen H. M. 1976; Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot (Tokyo) 29:743–753 [CrossRef]
    [Google Scholar]
  12. Bush K., Jacoby G. A., Medeiros A. A. 1995; A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233 [CrossRef]
    [Google Scholar]
  13. Cao L., Srikumar R., Poole K. 2004; MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa : identification and characterization of the nalC gene encoding a repressor of PA3720–PA3719. Mol Microbiol 53:1423–1436 [CrossRef]
    [Google Scholar]
  14. Castanheira M., Mendes R. E., Walsh T. R., Gales A. C., Jones R. N. 2004a; Emergence of the extended-spectrum β -lactamase GES-1 in a Pseudomonas aeruginosa strain from Brazil: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 48:2344–2345 [CrossRef]
    [Google Scholar]
  15. Castanheira M., Toleman M. A., Jones R. N., Schmidt F. J., Walsh T. R. 2004b; Molecular characterization of a β -lactamase gene, bla GIM-1, encoding a new subclass of metallo- β -lactamase. Antimicrob Agents Chemother 48:4654–4661 [CrossRef]
    [Google Scholar]
  16. Chanawong A., M'Zali F. H., Heritage J., Lulitanond A., Hawkey P. M. 2001; SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum β -lactamases in gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother 48:839–852 [CrossRef]
    [Google Scholar]
  17. Claeys G., Verschraegen G., de Baere T., Vaneechoutte M. 2000; PER-1 β -lactamase-producing Pseudomonas aeruginosa in an intensive care unit. J Antimicrob Chemother 45:924–925 [CrossRef]
    [Google Scholar]
  18. Cornaglia G., Mazzariol A., Lauretti L., Rossolini G. M., Fontana R. 2000; Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo- β -lactamase. Clin Infect Dis 31:1119–1125 [CrossRef]
    [Google Scholar]
  19. Corvec S., Poirel L., Decousser J. W., Allouch P. Y., Drugeon H., Nordmann P. 2006; Emergence of carbapenem-hydrolysing metallo- β -lactamase VIM-1 in Pseudomonas aeruginosa isolates in France. Clin Microbiol Infect 12:941–942 [CrossRef]
    [Google Scholar]
  20. Couture F., Lachapelle J., Levesque R. C. 1992; Phylogeny of LCR-1 and OXA-5 with class A and class D β -lactamases. Mol Microbiol 6:1693–1705 [CrossRef]
    [Google Scholar]
  21. Crespo M. P., Woodford N., Sinclair A., Kaufmann M. E., Turton J., Glover J., Velez J. D., Castaneda C. R., Recalde M., Livermore D. M. 2004; Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo- β -lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol 42:5094–5101 [CrossRef]
    [Google Scholar]
  22. Dale J. W., Godwin D., Mossakowska D., Stephenson P., Wall S. 1985; Sequence of the OXA-2 β -lactamase: comparison with other penicillin-reactive enzymes. FEBS Lett 191:39–44 [CrossRef]
    [Google Scholar]
  23. Danel F., Hall L. M. C., Gur D., Livermore D. M. 1995; OXA-14, another extended-spectrum variant of OXA-10 (PSE-2) β -lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 39:1881–1884 [CrossRef]
    [Google Scholar]
  24. Danel F., Hall L. M. C., Gur D., Livermore D. M. 1997; OXA-15, an extended-spectrum variant of OXA-2 β -lactamase, isolated from Pseudomonas aeruginosa strain. Antimicrob Agents Chemother 41:785–790
    [Google Scholar]
  25. Danel F., Hall L. M. C., Gur D., Livermore D. M. 1998; OXA-16, a further extended-spectrum variant of OXA-10 β -lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 42:3117–3122
    [Google Scholar]
  26. Danel F., Hall L. M. C., Duke B., Gur D., Livermore D. M. 1999; OXA-17, a further extended-spectrum variant of OXA-10 β -lactamase, isolated from Pseudomonas aeruginosa . Antimicrob Agents Chemother 43:1362–1366
    [Google Scholar]
  27. David M., Lemeland J. F., Boyer S. 2008; Emergence of extended-spectrum β -lactamases in Pseudomonas aeruginosa : about 24 cases at Rouen University Hospital. Pathol Biol (Paris) 56:429–434 [CrossRef]
    [Google Scholar]
  28. Dean C. R., Goldberg J. B. 2002; Pseudomonas aeruginosa galU is required for a complete lipopolysaccharide core and repairs a secondary mutation in a PA103 (serogroup O11) wbpM mutant. FEMS Microbiol Lett 210:277–283 [CrossRef]
    [Google Scholar]
  29. Dietz H., Pfeifle D., Wiedemann B. 1997; The signal molecule for β -lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrob Agents Chemother 41:2113–2120
    [Google Scholar]
  30. Doi Y., Arakawa Y. 2007; 16S ribosomal RNA methylation: emerging resistance mechanisms against aminoglycosides. Clin Infect Dis 45:88–94 [CrossRef]
    [Google Scholar]
  31. Doi Y., de Olivera Garcia D., Adams J., Paterson D. L. 2006; Coproduction of novel 16S rRNA methylase RmtD and metallo- β -lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother 51:852–856
    [Google Scholar]
  32. Dubois V., Arpin C., Noury P., Quentin C. 2002a; Clinical strain of Pseudomonas aeruginosa carrying a bla TEM-21 gene located on a chromosomal interrupted TnA type transposon. Antimicrob Agents Chemother 46:3624–3626 [CrossRef]
    [Google Scholar]
  33. Dubois V., Poirel L., Marie C., Arpin C., Nordmann P., Quentin C. 2002b; Molecular characterization of a novel class 1 integron containing bla GES-1 and fused product of aac(3)-Ib/aac(6′-Ib′ gene cassettes in Pseudomonas aeruginosa . Antimicrob Agents Chemother 46:638–645 [CrossRef]
    [Google Scholar]
  34. Dubois V., Arpin C., Noury P., Andre C., Coulange L., Quentin C. 2005; Prolonged outbreak of infection due to TEM-21-producing strains of Pseudomonas aeruginosa and enterobacteria in a nursing home. J Clin Microbiol 43:4129–4138 [CrossRef]
    [Google Scholar]
  35. El'Garch F., Jeannot K., Hocquet D., Llanes-Barakat C., Plesiat P. 2007; Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 51:1016–1021 [CrossRef]
    [Google Scholar]
  36. Empel J., Filczak K., Mrówka A., Hryniewicz W., Livermore D. M., Gniadkowski M. 2007; Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum β -lactamase in Warsaw. J Clin Microbiol 45:2829–2834 [CrossRef]
    [Google Scholar]
  37. Gibb A. P., Tribuddharat C., Moore R. A., Louie T. J., Krulicki W., Livermore D. M., Palepou M. F. I., Woodford N. 2002; Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new bla IMP allele, blaIMP-7 . Antimicrob Agents Chemother 46:255–258 [CrossRef]
    [Google Scholar]
  38. Girlich D., Naas T., Leelaporn A., Poirel L., Fennewald M., Nordmann P. 2002; Nosocomial spread of the integron-located veb-1 -like cassette encoding an extended-spectrum β -lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis 34:603–611 [CrossRef]
    [Google Scholar]
  39. Giske C. G., Rylander M., Kronvall G. 2003; VIM-4 in a carbapenem-resistant strain of Pseudomonas aeruginosa isolated in Sweden. Antimicrob Agents Chemother 47:3034–3035 [CrossRef]
    [Google Scholar]
  40. Guerin F., Henegar C., Spiridon G., Launay O., Salmon-Ceron D., Poyart C. 2005; Bacterial prostatitis due to Pseudomonas aeruginosa harbouring the bla VIM-2 metallo- β -lactamase gene from Saudi Arabia. J Antimicrob Chemother 56:601–602 [CrossRef]
    [Google Scholar]
  41. Hall L. M. C., Livermore D. M., Gur D. 1993; OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) β -lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 37:1637–1644 [CrossRef]
    [Google Scholar]
  42. Hanson N. D., Hossain A., Buck L., Moland E. S., Thomson K. S. 2006; First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo- β -lactamase, IMP-18. Antimicrob Agents Chemother 50:2272–2273 [CrossRef]
    [Google Scholar]
  43. Henrichfreise B., Wiegand I., Sherwood K. J., Wiedemann B. 2005; Detection of VIM-2 metallo- β -lactamase in Pseudomonas aeruginosa from Germany. Antimicrob Agents Chemother 49:1668–1669 [CrossRef]
    [Google Scholar]
  44. Höltje J. V., Kopp U., Ursinus A., Wiedemann B. 1994; The negative regulator of β -lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett 122:159–164 [CrossRef]
    [Google Scholar]
  45. Honore N., Nicolas M. H., Cole S. T. 1989; Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory transducer. Mol Microbiol 3:1121–1130 [CrossRef]
    [Google Scholar]
  46. Hooper D. C. 2001; Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7:337–341 [CrossRef]
    [Google Scholar]
  47. Hurley J. C., Miller G. H., Smith A. L. 1995; Mechanism of amikacin resistance in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Diagn Microbiol Infect Dis 22:331–336 [CrossRef]
    [Google Scholar]
  48. Jacobs C., Huang L. J., Bartowsky E., Normark S., Park J. T. 1994; Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β -lactamase induction. EMBO J 13:4684–4694
    [Google Scholar]
  49. Jo J. T., Brinkman F. S., Hancock R. E. 2003; Aminoglycoside efflux in Pseudomonas aeruginosa : involvement of novel outer membrane proteins. Antimicrob Agents Chemother 47:1101–1111 [CrossRef]
    [Google Scholar]
  50. Juan C., Moyá B., Pérez J. L., Oliver A. 2006; Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level β -lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother 50:1780–1787 [CrossRef]
    [Google Scholar]
  51. Juan C., Beceiro A., Gutiérrez O., Albertí S., Garau M., Pérez J. L., Bou G., Oliver A. 2008; Characterization of the new metallo- β -lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrob Agents Chemother 52:3589–3596 [CrossRef]
    [Google Scholar]
  52. Kadurugamuwa J. L., Lam L. S., Beveridge T. J. 1993; Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob Agents Chemother 37:715–721 [CrossRef]
    [Google Scholar]
  53. Kalai Blagui S., Achour W., Abbassi M. S., Bejaoui M., Abdeladhim A., Ben Hassen A. 2007; Nosocomial outbreak of OXA-18-producing Pseudomonas aeruginosa in Tunisia. Clin Microbiol Infect 13:794–800 [CrossRef]
    [Google Scholar]
  54. Koh T. H., Wang G. C., Sng L. H. 2004; Clonal spread of IMP-1-producing Pseudomonas aeruginosa in two hospitals in Singapore. J Clin Microbiol 42:5378–5380 [CrossRef]
    [Google Scholar]
  55. Kohler T., Michea-Hamzehpour M., Pesiat P., Kahr A. L., Pechere J. C. 1997; Differential selection of multidrug efflux system by quinolones in Pseudomonas aeruginosa . Antimicrob Agents Chemother 41:2540–2543
    [Google Scholar]
  56. Kohler T., Epp S. F., Curty L. K., Pechere J. C. 1999; Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa . J Bacteriol 181:6300–6305
    [Google Scholar]
  57. Kolayli F., Gacar G., Karadenizli A., Sanic A., Vahaboglu H. The Study Group 2005; PER-1 is still widespread in Turkish hospitals among Pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiol Lett 249:241–245 [CrossRef]
    [Google Scholar]
  58. Labuschagne C. J., Weldhagen G. F., Ehlers M. M., Dove M. G. 2008; Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum β -lactamases in clinical isolates of Pseudomonas aeruginosa in South Africa. Int J Antimicrob Agents 31:527–530 [CrossRef]
    [Google Scholar]
  59. Lagatolla C., Tonin E., Bragadin C., Dolzani L., Gombac F., Bearzi C., Edalucci E., Gionechetti F., Rossolini G. M. 2004; Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo- β -lactamase determinants in European hospital. Emerg Infect Dis 10:535–538 [CrossRef]
    [Google Scholar]
  60. Langaee T. Y., Gagnon L., Huletsky A. 2000; Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC β -lactamase expression. Antimicrob Agents Chemother 44:583–589 [CrossRef]
    [Google Scholar]
  61. Lauretti L., Riccio M. L., Mazzariol A., Cornaglia G., Amicosante G., Fontana R., Rossolini G. M. 1999; Cloning and characterization of bla VIM, a new integron-borne metallo- β -lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 43:1584–1590
    [Google Scholar]
  62. Lee K., Lim J. B., Yum J. H., Yong D., Chong Y., Kim J. M., Livermore D. M. 2002; bla VIM-2 cassette-containing novel integrons in metallo- β -lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates in a Korean Hospital. Antimicrob Agents Chemother 46:1053–1058 [CrossRef]
    [Google Scholar]
  63. Li X.-Z., Barré N., Poole K. 2000; Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa . J Antimicrob Chemother 46:885–893 [CrossRef]
    [Google Scholar]
  64. Li Y., Mima T., Komori Y., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. 2003; A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa . J Antimicrob Chemother 52:572–575 [CrossRef]
    [Google Scholar]
  65. Libisch B., Gacs M., Csiszar K., Murslay M., Rokusz L., Fuzi M. 2004; Isolation of an integron-borne bla VIM-4 type metallo- β -lactamase gene from a carbapenem-resistant Pseudomonas aeruginosa clinical isolate in Hungary. Antimicrob Agents Chemother 48:3576–3578 [CrossRef]
    [Google Scholar]
  66. Livermore D. M. 1984; Penicillin-binding proteins, porins and outer-membrane permeability of carbenicillin-resistant and -susceptible strains of Pseudomonas aeruginosa . J Med Microbiol 18:261–270 [CrossRef]
    [Google Scholar]
  67. Livermore D. M. 1992; Interplay of impermeability and chromosomal β -lactamase activity in imipenem-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 36:2046–2048 [CrossRef]
    [Google Scholar]
  68. Livermore D. M. 1995; β -lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–584
    [Google Scholar]
  69. Livermore D. M. 2001; Of Pseudomonas , porins, pumps and carbapenems. J Antimicrob Chemother 47:247–250 [CrossRef]
    [Google Scholar]
  70. Livermore D. M. 2002; Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa : our worst nightmare?. Clin Infect Dis 34:634–640 [CrossRef]
    [Google Scholar]
  71. Llanes C., Hocquet D., Vogne C., Benali-Baitich D., Neuwirth C., Plesiat P. 2004; Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 48:1797–1802 [CrossRef]
    [Google Scholar]
  72. Llano-Sotelo B., Azucena E. F., Kotra L. P., Mobashery S., Chow C. S. 2002; Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem Biol 9:455–463 [CrossRef]
    [Google Scholar]
  73. Lodge J., Busby S., Piddock L. 1993; Investigation of the Pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC β -lactamase promoter. FEMS Microbiol Lett 111:315–320
    [Google Scholar]
  74. Lolans K., Queenam A. M., Bush K., Sahud A., Quinn J. P. 2005; First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo- β -lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 49:3538–3540 [CrossRef]
    [Google Scholar]
  75. Luzzaro F., Mantengoli E., Perilli M., Lombardi G., Orlandi V., Orsatti A. 2001; Dynamics of a nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β -lactamase. J Clin Microbiol 39:1865–1870 [CrossRef]
    [Google Scholar]
  76. MacLeod D. L., Nelson L. E., Shawar R. M., Lin B. B., Lockwood L. G., Dirks J. E., Miller G. H., Burns J. L., Garber R. L. 2000; Aminoglycoside resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis 181:1180–1184 [CrossRef]
    [Google Scholar]
  77. Magnet S., Blanchard J. S. 2005; Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498 [CrossRef]
    [Google Scholar]
  78. Mao W., Warren M., Lee A., Mistry A., Lomovskaya O. 2001; MexXY-OprM efflux pump is required for antagonism of aminoglycosides by divalent cations in Pseudomonas aeruginosa . Antimicrob Agents Chemother 45:2001–2007 [CrossRef]
    [Google Scholar]
  79. Marchandin H., Jean-Piere H., De Champs C., Sirot D., Darbas H., Perigault P. F., Carriere C. 2000; Production of a TEM-24 plasmid mediated extended-spectrum β -lactamase by a clinical isolate of Pseudomonas aeruginosa . Antimicrob Agents Chemother 44:213–216 [CrossRef]
    [Google Scholar]
  80. Masuda N., Ohya S. 1992; Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa . Antimicrob Agents Chemother 36:1847–1851 [CrossRef]
    [Google Scholar]
  81. Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. 2000a; Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa . Antimicrob Agents Chemother 44:3322–3327 [CrossRef]
    [Google Scholar]
  82. Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. 2000b; Contribution of the MexX-MexY-OprM system to intrinsic resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 44:2242–2246 [CrossRef]
    [Google Scholar]
  83. Mavroidi A., Tsakris A., Tzelepi E., Pournaras S., Loukova V., Tzouvelekis L. S. 2000; Carbapenem-hydrolyzing VIM-2 metallo- β -lactamase in Pseudomonas aeruginosa from Greece. J Antimicrob Chemother 46:1041–1042 [CrossRef]
    [Google Scholar]
  84. Mavroidi A., Tzelepi E., Tsakris A., Miriagou V., Sofianou D., Tzouvelekis L. S. 2001; An integron-associated β -lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β -lactamase IBC-1. J Antimicrob Chemother 48:627–630 [CrossRef]
    [Google Scholar]
  85. Mazzariol A., Bahar G., Konkan R., Fontana R., Cornaglia G. 2005a; A new outbreak of VIM-1-producing Pseudomonas aeruginosa in the same site as the first VIM description. Clin Microbiol Infect 11 (Suppl. 2):113
    [Google Scholar]
  86. Mazzariol A., Mammina C., Konkan R., Di Gaetano V., Di Carlo P., Cipolla D., Corsello G., Cornaglia G. 2005b; Detection of a new VIM-type metallo- β -lactamase (VIM-11) in a Pseudomonas aeruginosa clinical isolate from Italy. Clin Microbiol Infect 11 (Suppl. 2):99 [CrossRef]
    [Google Scholar]
  87. McGowan J. E. Jr 2006; Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Infect Control 34:S29–S37 [CrossRef]
    [Google Scholar]
  88. Mendes R. E., Toleman M. A., Ribeiro J., Sader H. S., Jones R. N., Walsh T. R. 2004a; Integron carrying a novel metallo- β -lactamase gene, bla IMP-16, and a fused form of aminoglycoside-resistant gene aac(6′)-30/aac(6′)-Ib′ : report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 48:4693–4702 [CrossRef]
    [Google Scholar]
  89. Mendes R. E., Castanheira M., Garcia P., Guzman M., Toleman M. A., Walsh T. R., Jones R. N. SENTRY Antimicrobial Surveillance Program (2004b). First isolation of bla VIM-2 in Latin America: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 48:1433–1434 [CrossRef]
    [Google Scholar]
  90. Mesaros N., Nordmann P., Plésiat P., Roussel-Delvallez M., Van Eldere J., Glupczynski Y., Van Laethem Y., Jacobs F., Lebesque P. other authors 2007; Pseudomonas aeruginosa : resistance and therapeutic options at the turn of the new millenium. Clin Microbiol Infect 13:560–578 [CrossRef]
    [Google Scholar]
  91. Miller G. H., Sabatelli F. J., Hare R. S., Glupczynski Y., Mackey P., Shlaes D., Shimizu K., Shaw K. J. the Aminoglycoside Resistance Study Group 1997; The most frequent aminoglycoside resistance mechanisms – changes with time and geographic area: a reflection of aminoglycoside usage patterns?. Clin Infect Dis 24 (Suppl. 1):S46–S62 [CrossRef]
    [Google Scholar]
  92. Mugnier P., Dubrous P., Casin I., Arlet G., Collatz E. 1996; A TEM-derived extended-spectrum β -lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 40:2488–2493
    [Google Scholar]
  93. Mugnier P., Casin I., Bouthors A.-T., Collatz E. 1998a; Novel OXA-10-derived extended-spectrum β -lactamases selected in vivo or in vitro . Antimicrob Agents Chemother 42:3113–3116
    [Google Scholar]
  94. Mugnier P., Podglajen I., Goldstein F. W., Collatz E. 1998b; Carbapenems as inhibitors of OXA-13, a novel, integron-encoded β -lactamase in Pseudomonas aeruginosa . Microbiology 144:1021–1031 [CrossRef]
    [Google Scholar]
  95. Naas T., Nordmann P. 1999; OXA-type β -lactamases. Curr Pharm Des 5:865–879
    [Google Scholar]
  96. Naas T., Sougakoff W., Casetta A., Nordmann P. 1998; Molecular characterization of OXA-20, a novel class D β -lactamase, and its integron from Pseudomonas aeruginosa . Antimicrob Agents Chemother 42:2074–2083
    [Google Scholar]
  97. Naas T., Philippon L., Poirel L., Ronco E., Nordmann P. 1999a; An SHV-derived extended-spectrum β -lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 43:1281–1284
    [Google Scholar]
  98. Naas T., Poirel L., Karim A., Nordmann P. 1999b; Molecular characterization of In 50 , a class 1 integron encoding the gene for the extended-spectrum β -lactamase VEB-1 in Pseudomonas aeruginosa . FEMS Microbiol Lett 176:411–419
    [Google Scholar]
  99. Nakajima A., Sugimoto Y., Yoneyama H., Nakae T. 2002; High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol Immunol 46:391–395 [CrossRef]
    [Google Scholar]
  100. Neonakis I. K., Scoulica E. V., Dimitriou S. K., Gikas A. I., Tselentis Y. J. 2003; Molecular epidemiology of extended-spectrum β -lactamases produced by clinical isolates in a university hospital in Greece: detection of SHV-5 in Pseudomonas aeruginosa and prevalence of SHV-12. Microb Drug Resist 9:161–165 [CrossRef]
    [Google Scholar]
  101. Nordmann P., Guibert M. 1998; Extended-spectrum β -lactamases in Pseudomonas aeruginosa . J Antimicrob Chemother 42:128–131 [CrossRef]
    [Google Scholar]
  102. Nordmann P., Naas T. 1994; Sequence analysis of PER-1 extended-spectrum β -lactamase from Pseudomonas aeruginosa and comparison with class A β -lactamases. Antimicrob Agents Chemother 38:104–114 [CrossRef]
    [Google Scholar]
  103. Nordmann P., Poirel L. 2002; Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8:321–331 [CrossRef]
    [Google Scholar]
  104. Normark S. 1995; β -Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb Drug Resist 1:111–114 [CrossRef]
    [Google Scholar]
  105. Pagani L., Mantengoli E., Migliavacca R., Nucleo E., Pollini S., Spalla M., Daturi R., Romero E., Rossolini G. M. 2004; Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β -lactamase in Northern Italy. J Clin Microbiol 42:2523–2529 [CrossRef]
    [Google Scholar]
  106. Pagani L., Colinon C., Migliavacca R., Labonina M., Docquier J. D., Nucleo E., Spalla M., Li Bergoli M., Rossolini G. M. 2005; Nosocomial outbreak caused by multidrug-resistant Pseudomonas aeruginosa producing IMP-13 metallo- β -lactamase. J Clin Microbiol 43:3824–3828 [CrossRef]
    [Google Scholar]
  107. Pai H., Kim J. V., Kim J., Lee J., Choe K., Gotoh N. 2001; Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 45:480–484 [CrossRef]
    [Google Scholar]
  108. Parkins M. D., Pitout J. D. D., Church D. L., Conly J. M., Laupland K. B. 2007; Treatment of infections caused by metallo- β -lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region. Clin Microbiol Infect 13:199–202 [CrossRef]
    [Google Scholar]
  109. Pasteran F., Faccone D., Petroni A., Rapoport M., Galas M., Vazquez M., Procopio A. 2005; Novel variant ( bla VIM-11) of the metallo- β -lactamase bla (VIM) family in a GES-1 extended-spectrum β -lactamase-producing Pseudomonas aeruginosa clinical isolate in Argentina. Antimicrob Agents Chemother 49:474–475 [CrossRef]
    [Google Scholar]
  110. Patzer J., Toleman M., Deshpande L., Kaminska W., Dzierzanowska D., Bennett P. M., Jones R. N., Walsh T. R. 2004; Pseudomonas aeruginosa strains harbouring an unusual bla VIM-4 gene cassette from hospitalized children in Poland (1998–2001). J Antimicrob Chemother 53:451–456 [CrossRef]
    [Google Scholar]
  111. Patzer J. A., Toleman M. A., Grzesik A., Dzierzanowska D., Walsh T. R. 2005; The diverse integron structures disseminating VIM genes in Poland. Clin Microbiol Infect 11 (Suppl. 2):100
    [Google Scholar]
  112. Pechere J. C., Kohler T. 1999; Patterns and modes of β -lactam resistance in Pseudomonas aeruginosa . Clin Microbiol Infect 5 (Suppl. 1):S15–S18 [CrossRef]
    [Google Scholar]
  113. Pena A., Martins J., Donato A., Leitao R., Cardoso O. 2005; Occurrence of metallo- β -lactamase VIM-2 in Pseudomonas aeruginosa clinical isolates resistant to carbapenems in a hospital in central Portugal. Clin Microbiol Infect 11 (Suppl. 2):107
    [Google Scholar]
  114. Peňa C., Suarez C., Tubau F., Gutierrez O., Domingues A., Oliver A., Pujol M., Ariza J. 2007; Nosocomial spread of Pseudomonas aeruginosa producing the metallo- β -lactamase VIM-2 in a Spanish hospital: clinical and epidemiological implications. Clin Microbiol Infect 13:1026–1029 [CrossRef]
    [Google Scholar]
  115. Philippon L. N., Naas T., Bouthors A.-T., Barakett V., Nordmann P. 1997; OXA-18, a class D clavulanic acid-inhibited extended-spectrum β -lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 41:2188–2195
    [Google Scholar]
  116. Poirel L., Ronco E., Naas T., Nordmann P. 1999; Extended-spectrum β -lactamase TEM-4 in Pseudomonas aeruginosa . Clin Microbiol Infect 5:651–652 [CrossRef]
    [Google Scholar]
  117. Poirel L., Naas T., Nicolas D., Collet L., Bellais S., Cavallo J. D., Nordmann P. 2000; Characterization of VIM-2, a carbapenem-hydrolyzing metallo- β -lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44:891–897 [CrossRef]
    [Google Scholar]
  118. Poirel L., Girlich D., Naas T., Nordmann P. 2001a; OXA-28, an extended-spectrum variant of OXA-10 β -lactamase from Pseudomonas aeruginosa and its plasmid- and integron-located gene. Antimicrob Agents Chemother 45:447–453 [CrossRef]
    [Google Scholar]
  119. Poirel L., Lambert T., Turkoglu S., Ronco E., Gaillard J., Nordmann P. 2001b; Characterization of class 1 integrons from Pseudomonas aeruginosa that contain the bla VIM-2 carbapenem-hydrolyzing β -lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob Agents Chemother 45:546–552 [CrossRef]
    [Google Scholar]
  120. Poirel L., Rotimi V. O., Mokaddas E. M., Karim A., Nordmann P. 2001c; VEB-1-like extended-spectrum β -lactamases in Pseudomonas aeruginosa , Kuwait. Emerg Infect Dis 7:468–470 [CrossRef]
    [Google Scholar]
  121. Poirel L., Gerome P., De Champs C., Stephanazzi J., Naas T., Nordmann P. 2002a; Integron-located oxa-32 gene cassette encoding extended-spectrum variant of OXA-2 β -lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 46:566–569 [CrossRef]
    [Google Scholar]
  122. Poirel L., Weldhagen G. F., De Champs C., Nordmann P. 2002b; A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum β -lactamase GES-2 in South Africa. J Antimicrob Chemother 49:561–565 [CrossRef]
    [Google Scholar]
  123. Poirel L., Lebessi E., Castro M., Fèvre C., Foustoukou M., Nordmann P. 2004a; Nosocomial outbreak of extended-spectrum β -lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother 48:2277–2279 [CrossRef]
    [Google Scholar]
  124. Poirel L., Magalhaes M., Lopes M., Nordmann P. 2004b; Molecular analysis of metallo- β -lactamase gene bla SPM-1-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recifile. Brazil. Antimicrob Agents Chemother 48:1406–1409 [CrossRef]
    [Google Scholar]
  125. Poirel L., Brinas L., Fortineau N., Nordmann P. 2005a; GES-5, a novel variant of the extended-spectrum β -lactamase GES-1 with an increased hydrolysis of aztreonam in a Pseudomonas aeruginosa clinical isolate in France. Clin Microbiol Infect 11 (Suppl. 2):84
    [Google Scholar]
  126. Poirel L., Brinas L., Fortineau N., Nordmann P. 2005b; Integron-encoded GES-type extended-spectrum β -lactamase with increased activity toward aztreonam in Pseudomonas aeruginosa . Antimicrob Agents Chemother 49:3593–3597 [CrossRef]
    [Google Scholar]
  127. Poirel L., Brinas L., Verlinde A., Ide L., Nordmann P. 2005c; BEL-1, a novel clavulanic acid-inhibited extended-spectrum β -lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa . Antimicrob Agents Chemother 49:3743–3748 [CrossRef]
    [Google Scholar]
  128. Poole K. 2005; Aminoglycoside resistance in Pseudomonas aerginosa . Antimicrob Agents Chemother 49:479–487 [CrossRef]
    [Google Scholar]
  129. Poole K., Gotoh N., Tsujimoto H., Zhao Q., Wada A., Yamasaki T., Neshat S., Yamagishi J., Li X. Z., Nishino T. 1996; Overexpression of the mexC-mexD-oprJ efflux operon in nfxB -type multidrug-resistant strains of Pseudomonas aeruginosa . Mol Microbiol 21:713–724 [CrossRef]
    [Google Scholar]
  130. Pournaras S., Tsakris A., Maniati M., Tzouvelekis L. S., Maniatis A. N. 2002; Novel variant ( bla VIM-4) of the metallo- β -lactamase gene bla VIM-1 in a clinical strain of Pseudomonas aeruginosa . Antimicrob Agents Chemother 46:4026–4028 [CrossRef]
    [Google Scholar]
  131. Prats G., Miro I., Mirelis B., Poirel L., Bellais S., Nordmann P. 2002; First isolation of a carbapenem-hydrolyzing β -lactamase in Pseudomonas aeruginosa in Spain. Antimicrob Agents Chemother 46:932–933 [CrossRef]
    [Google Scholar]
  132. Riccio M. L., Pallechi L., Fontana R., Rossolini G. M. 2001; In 70 of plasmid pAX22, a bla (VIM-1)-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob Agents Chemother 45:1249–1253 [CrossRef]
    [Google Scholar]
  133. Saito K., Yoneyama H., Nakae T. 1999; nalB -type mutations causing the overexpression of the MexA-MexB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol Lett 179:67–72 [CrossRef]
    [Google Scholar]
  134. Sanschagrin F., Couture F., Levesque R. C. 1995; Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D β -lactamases. Antimicrob Agents Chemother 39:887–893 [CrossRef]
    [Google Scholar]
  135. Sanschagrin F., Bejaoui N., Levesque R. C. 1998; Structure of CARB-4 and AER-1 carbenicillin hydrolyzing β -lactamases. Antimicrob Agents Chemother 42:1966–1972
    [Google Scholar]
  136. Schneider I., Keuleyan E., Rasshofer R., Markovska R., Queenan A. M., Bauernfeind A. 2008; VIM-15 and VIM-16, two new VIM-2-like metallo- β -lactamases in Pseudomonas aeruginosa isolates from Bulgaria and Germany. Antimicrob Agents Chemother 52:2977–2979 [CrossRef]
    [Google Scholar]
  137. Scoulica E., Aransay A., Tselentis Y. 1995; Molecular characterization of the OXA-7 β -lactamase gene. Antimicrob Agents Chemother 39:1379–1382 [CrossRef]
    [Google Scholar]
  138. Senda K., Arakawa Y., Nakashima K., Ito H., Ichiyama S., Shimokata K., Kato N., Ohta M. 1996; Multifocal outbreaks of metallo- β -lactamase producing Pseudomonas aeruginosa resistant to broad-spectrum β -lactams, including carbapenems. Antimicrob Agents Chemother 40:349–353
    [Google Scholar]
  139. Sobel M. L., Hocquet D., Cao L., Plesiat P., Poole K. 2005; Mutations in PA3574 ( nalD ) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa . Antimicrob Agents Chemother 49:1782–1786 [CrossRef]
    [Google Scholar]
  140. Srikumar R., Paul C., Poole K. 2000; Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa . J Bacteriol 182:1410–1414 [CrossRef]
    [Google Scholar]
  141. Strateva T., Ouzounova-Raykova V., Markova B., Todorova A., Marteva-Proevska Y., Mitov I. 2007; Widespread detection of VEB-1-type extended spectrum β -lactamases among nosocomial ceftazidime-resistant Pseudomonas aeruginosa isolates in Sofia, Bulgaria. J Chemother 19:140–145 [CrossRef]
    [Google Scholar]
  142. Sykes R. B., Mattew M. 1976; The β -lactamases of gram-negative bacteria and their role in resistance to β -lactam antibiotics. J Antimicrob Chemother 2:115–157 [CrossRef]
    [Google Scholar]
  143. Taber H. W., Mueller J. P., Miller P. F., Arrow A. S. 1987; Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 51:439–457
    [Google Scholar]
  144. Toleman M. A., Simm A. M., Murphy T. A., Gales A. C., Biedenbach D. J., Jones R. N., Walsh T. R. 2002; Molecular characterization of SPM-1, a novel metallo- β -lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 50:673–679 [CrossRef]
    [Google Scholar]
  145. Toleman M. A., Rolston K., Jones R. N., Walsh T. R. 2003; Molecular and biochemical characterization of OXA-45, an extended-spectrum class 2d’ β -lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 47:2859–2863 [CrossRef]
    [Google Scholar]
  146. Toleman M. A., Rolston K., Jones R. N., Walsh T. R. 2004; bla VIM-7, an evolutionarily distinct metallo- β -lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 48:329–332 [CrossRef]
    [Google Scholar]
  147. Toleman M. A., Collin I., Sidorenko S., Cherkashyn E., Ivanov D., Tishkov V., Walsh T. R. 2007a; VIM-2 metallo- β -lactamases genes found in Pseudomonas aeruginosa and Acinetobacter spp. from Russia and associated with unusual integrons. Clin Microbiol Infect 13, (S1:S106 [CrossRef]
    [Google Scholar]
  148. Toleman M. A., Vinodh H., Sekar U., Vijaylakshmi K., Walsh T. R. 2007b; VIM-2 metallo- β -lactamase emerges in Pseudomonas aeruginosa isolated from India. Clin Microbiol Infect 13, (S1:S107
    [Google Scholar]
  149. Tsakris A., Pournaras S., Woodford N., Palepou M. F., Babini G. S., Douboyas J., Livermore D. M. 2000; Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol 38:1290–1292
    [Google Scholar]
  150. Vahaboglu H., Ozturk R., Aygun G., Coskunkan F., Yaman A., Kaygusuz A., Leblebicioglu H., Balik I., Aydin K., Otkun M. 1997; Widespread detection of PER-1-type extended-spectrum β -lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother 41:2265–2269
    [Google Scholar]
  151. Vahaboglu H., Coskunkan F., Tansel O., Ozturk R., Sahin N., Koksal I., Kocazeybek B., Tatman-Otkun M., Leblebicioglu H. other authors 2001; Clinical importance of extended-spectrum β -lactamase (PER-1-type) producing Acinetobacter spp. and Pseudomonas aeruginosa strains. J Med Microbiol 50:642–645
    [Google Scholar]
  152. Vakulenko S. B., Mobashery S. 2003; Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450 [CrossRef]
    [Google Scholar]
  153. Villegas M. V., Lolans K., Del Rosario Olivera M., Suarez C. J., Correa A., Queenan A. M., Quinn J. P. 2006; First detection of metallo- β -lactamase VIM-2 in Pseudomonas aeruginosa isolates from Colombia. Antimicrob Agents Chemother 50:226–229 [CrossRef]
    [Google Scholar]
  154. Vogne C., Ramos Aires J., Bailly C., Hocquet D., Plesiat P. 2004; Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 48:1676–1680 [CrossRef]
    [Google Scholar]
  155. Walsh F., Rogers T. R. 2007; Detection of bla VIM-2 carbapenemase in Pseudomonas aeruginosa in Ireland. J Antimicrob Chemother 61:219–220
    [Google Scholar]
  156. Walsh T. R., Toleman M. A., Poirel L., Nordmann P. 2005; Metallo- β -lactamases: the quiet before storm?. Clin Microbiol Rev 18:306–325 [CrossRef]
    [Google Scholar]
  157. Wang D., Sun T., Hu Y. 2007; Contributions of efflux pumps to high level resistance of Pseudomonas aeruginosa to ciprofloxacin. Chin Med J 120:68–70
    [Google Scholar]
  158. Weldhagen G. F., Prinsloo A. 2004; Molecular detection of GES-2 extended-spectrum β -lactamase producing Pseudomonas aeruginosa in Pretoria, South Africa. Int J Antimicrob Agents 24:35–38
    [Google Scholar]
  159. Weldhagen G. F., Poirel L., Nordmann P. 2003; Ambler class A extended-spectrum β -lactamases in Pseudomonas aeruginosa : novel developments and clinical impacts. Antimicrob Agents Chemother 47:2385–2392 [CrossRef]
    [Google Scholar]
  160. Xiong J., Hynes M. F., Ye H., Chen H., Yang Y., M'zali F., Hawkey P. M. 2006; bla IMP-9 and its association with large plasmids carried by Pseudomonas aeruginosa isolates from the People's Republic of China. Antimicrob Agents Chemother 50:355–358 [CrossRef]
    [Google Scholar]
  161. Yakupogullari Y., Poirel L., Bernabeu S., Kizigil A., Nordmann P. 2008; Multidrug-resistant Pseudomonas aeruginosa isolate co-expressing extended-spectrum β -lactamase PER-1 and metallo- β -lactamase VIM-2 from Turkey. J Antimicrob Chemother 61:221–222
    [Google Scholar]
  162. Yamane K., Doi Y., Yokoyama K., Yagi T., Kurokawa H., Shibata N., Shibayama K., Kato H., Arakawa Y. 2004; Genetic environments of the rmtA gene in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 48:2069–2074 [CrossRef]
    [Google Scholar]
  163. Yan J. J., Hsueh P. R., Ko W. C., Luh K. T., Tsai S. H., Wu H. M., Wu J. J. 2001; Metallo- β -lactamases in clinical isolates in Taiwan and identification of VIM-3 a novel variant of VIM-2 enzyme. Antimicrob Agents Chemother 45:2224–2228 [CrossRef]
    [Google Scholar]
  164. Yatsuyanagi J., Saito S., Harata S., Suzuki N., Ito Y., Amano K., Enomoto K. 2004; Class 1 integron containing metallo- β -lactamase gene bla VIM-2 in Pseudomonas aeruginosa clinical strains isolated in Japan. Antimicrob Agents Chemother 48:626–628 [CrossRef]
    [Google Scholar]
  165. Yokoyama K., Doi Y., Yamane K., Kurokawa H., Shibata N., Shibayama K., Yagi T., Kato H., Arakawa Y. 2003; Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa . Lancet 362:1888–1893 [CrossRef]
    [Google Scholar]
  166. Yu Y.-S., Qu T.-T., Zhou J.-Y., Wang J., Li H.-Y., Walsh T. R. 2006; Integrons containing the VIM-2 metallo- β -lactamase gene among imipenem-resistant Pseudomonas aeruginosa strains from different Chinese hospitals. J Clin Microbiol 44:4242–4245 [CrossRef]
    [Google Scholar]
  167. Zavascki A. P., Gaspareto P. B., Martins A. F., Goncalves A. L., Barth A. L. 2005; Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo- β -lactamase in a teaching hospital in Southern Brazil. J Antimicrob Chemother 56:1148–1151 [CrossRef]
    [Google Scholar]
  168. Ziha-Zarifi I., Llanes C., Kohler T., Pechere J. C., Plesiat P. 1999; In vitro emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 43:287–291
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009142-0
Loading
/content/journal/jmm/10.1099/jmm.0.009142-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error