1887

Abstract

A first step towards the development of a human immunodeficiency virus (HIV) animal model has been the identification and surmounting of species-specific barriers encountered by HIV along its replication cycle in cells from small animals. Serine incorporator proteins 3 (SERINC3) and 5 (SERINC5) were recently identified as restriction factors that reduce HIV-1 infectivity. Here, we compared the antiviral activity of SERINC3 and SERINC5 among mice, rats and rabbits, and their susceptibility to viral counteraction to their human counterparts. In the absence of viral antagonists, rodent and lagomorph SERINC3 and SERINC5 displayed anti-HIV activity in a similar range to human controls. Vesicular stomatitis virus G protein (VSV-G) pseudotyped virions were considerably less sensitive to restriction by all SERINC3/5 orthologs. Interestingly, HIV-1 Nef, murine leukemia virus (MLV) GlycoGag and equine infectious anemia virus (EIAV) S2 counteracted the antiviral activity of all SERINC3/5 orthologs with similar efficiency. Our results demonstrate that the antiviral activity of SERINC3/5 proteins is conserved in rodents and rabbits, and can be overcome by all three previously reported viral antagonists.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001201
2018-12-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/100/2/278.html?itemId=/content/journal/jgv/10.1099/jgv.0.001201&mimeType=html&fmt=ahah

References

  1. Bieniasz PD, Cullen BR. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J Virol 2000; 74:9868–9877 [View Article][PubMed]
    [Google Scholar]
  2. Keppler OT, Welte FJ, Ngo TA, Chin PS, Patton KS et al. Progress toward a human CD4/CCR5 transgenic rat model for de novo infection by human immunodeficiency virus type 1. J Exp Med 2002; 195:719–736 [View Article][PubMed]
    [Google Scholar]
  3. Zhang JX, Diehl GE, Littman DR. Relief of preintegration inhibition and characterization of additional blocks for HIV replication in primary mouse T cells. PLoS One 2008; 3:e2035 [View Article][PubMed]
    [Google Scholar]
  4. Michel N, Goffinet C, Ganter K, Allespach I, Kewalramani VN et al. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo. Retrovirology 2009; 6:2 [View Article][PubMed]
    [Google Scholar]
  5. Tervo HM, Keppler OT. High natural permissivity of primary rabbit cells for HIV-1, with a virion infectivity defect in macrophages as the final replication barrier. J Virol 2010; 84:12300–12314 [View Article][PubMed]
    [Google Scholar]
  6. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986; 47:333–348 [View Article][PubMed]
    [Google Scholar]
  7. Browning J, Horner JW, Pettoello-Mantovani M, Raker C, Yurasov S et al. Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc Natl Acad Sci USA 1997; 94:14637–14641 [View Article][PubMed]
    [Google Scholar]
  8. Bieniasz PD, Grdina TA, Bogerd HP, Cullen BR. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 1998; 17:7056–7065 [View Article][PubMed]
    [Google Scholar]
  9. Chen D, Fong Y, Zhou Q. Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription. Proc Natl Acad Sci USA 1999; 96:2728–2733 [View Article][PubMed]
    [Google Scholar]
  10. Sherer NM, Swanson CM, Hué S, Roberts RG, Bergeron JR et al. Evolution of a species-specific determinant within human CRM1 that regulates the post-transcriptional phases of HIV-1 replication. PLoS Pathog 2011; 7:e1002395 [View Article][PubMed]
    [Google Scholar]
  11. Okada H, Zhang X, Ben Fofana I, Nagai M, Suzuki H et al. Synergistic effect of human CycT1 and CRM1 on HIV-1 propagation in rat T cells and macrophages. Retrovirology 2009; 6:43 [View Article][PubMed]
    [Google Scholar]
  12. Schaller T, Hué S, Towers GJ. An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins. J Virol 2007; 81:11713–11721 [View Article][PubMed]
    [Google Scholar]
  13. Fletcher AJ, Hué S, Schaller T, Pillay D, Towers GJ. Hare TRIM5α restricts divergent retroviruses and exhibits significant sequence variation from closely related lagomorpha TRIM5 genes. J Virol 2010; 84:12463–12468 [View Article][PubMed]
    [Google Scholar]
  14. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474:658–661 [View Article][PubMed]
    [Google Scholar]
  15. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474:654–657 [View Article][PubMed]
    [Google Scholar]
  16. Rehwinkel J, Maelfait J, Bridgeman A, Rigby R, Hayward B et al. SAMHD1-dependent retroviral control and escape in mice. EMBO J 2013; 32:2454–2462 [View Article][PubMed]
    [Google Scholar]
  17. Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008; 451:425–430 [View Article][PubMed]
    [Google Scholar]
  18. van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 2008; 3:245–252 [View Article][PubMed]
    [Google Scholar]
  19. Goffinet C, Allespach I, Homann S, Tervo HM, Habermann A et al. HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe 2009; 5:285–297 [View Article][PubMed]
    [Google Scholar]
  20. Goffinet C, Schmidt S, Kern C, Oberbremer L, Keppler OT. Endogenous CD317/Tetherin limits replication of HIV-1 and murine leukemia virus in rodent cells and is resistant to antagonists from primate viruses. J Virol 2010; 84:11374–11384 [View Article][PubMed]
    [Google Scholar]
  21. Liberatore RA, Bieniasz PD. Tetherin is a key effector of the antiretroviral activity of type I interferon in vitro and in vivo. Proc Natl Acad Sci USA 2011; 108:18097–18101 [View Article][PubMed]
    [Google Scholar]
  22. Mariani R, Chen D, Schröfelbauer B, Navarro F, König R et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 2003; 114:21–31 [View Article][PubMed]
    [Google Scholar]
  23. Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 2004; 14:1392–1396 [View Article][PubMed]
    [Google Scholar]
  24. Ikeda T, Ohsugi T, Kimura T, Matsushita S, Maeda Y et al. The antiretroviral potency of APOBEC1 deaminase from small animal species. Nucleic Acids Res 2008; 36:6859–6871 [View Article][PubMed]
    [Google Scholar]
  25. Rosa A, Chande A, Ziglio S, de Sanctis V, Bertorelli R et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 2015; 526:212–217 [View Article][PubMed]
    [Google Scholar]
  26. Usami Y, Wu Y, Göttlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 2015; 526:218–223 [View Article][PubMed]
    [Google Scholar]
  27. Inuzuka M, Hayakawa M, Ingi T. Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J Biol Chem 2005; 280:35776–35783 [View Article][PubMed]
    [Google Scholar]
  28. Trautz B, Wiedemann H, Lüchtenborg C, Pierini V, Kranich J et al. The host-cell restriction factor SERINC5 restricts HIV-1 infectivity without altering the lipid composition and organization of viral particles. J Biol Chem 2017; 292:13702–13713 [View Article][PubMed]
    [Google Scholar]
  29. Heigele A, Kmiec D, Regensburger K, Langer S, Peiffer L et al. The Potency of Nef-Mediated SERINC5 Antagonism Correlates with the Prevalence of Primate Lentiviruses in the Wild. Cell Host Microbe 2016; 20:381–391 [View Article][PubMed]
    [Google Scholar]
  30. Murrell B, Vollbrecht T, Guatelli J, Wertheim JO. The Evolutionary Histories of Antiretroviral Proteins SERINC3 and SERINC5 Do Not Support an Evolutionary Arms Race in Primates. J Virol 2016; 90:8085–8089 [View Article][PubMed]
    [Google Scholar]
  31. Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J Biol Chem 2017; 292:6014–6026 [View Article][PubMed]
    [Google Scholar]
  32. Schulte B, Selyutina A, Opp S, Herschhorn A, Sodroski JG et al. Localization to detergent-resistant membranes and HIV-1 core entry inhibition correlate with HIV-1 restriction by SERINC5. Virology 2018; 515:52–65 [View Article][PubMed]
    [Google Scholar]
  33. Melikyan GB. Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology 2008; 5:111 [View Article][PubMed]
    [Google Scholar]
  34. Zhang X, Zhou T, Yang J, Lin Y, Shi J et al. Identification of SERINC5-001 as the Predominant Spliced Isoform for HIV-1 Restriction. J Virol 2017; 91: [View Article][PubMed]
    [Google Scholar]
  35. Dai W, Usami Y, Wu Y, Göttlinger H. A Long Cytoplasmic Loop Governs the Sensitivity of the Anti-viral Host Protein SERINC5 to HIV-1 Nef. Cell Rep 2018; 22:869–875 [View Article][PubMed]
    [Google Scholar]
  36. Kmiec D, Akbil B, Ananth S, Hotter D, Sparrer KMJ et al. SIVcol Nef counteracts SERINC5 by promoting its proteasomal degradation but does not efficiently enhance HIV-1 replication in human CD4+ T cells and lymphoid tissue. PLoS Pathog 2018; 14:e1007269 [View Article][PubMed]
    [Google Scholar]
  37. Ahi YS, Zhang S, Thappeta Y, Denman A, Feizpour A et al. Functional iterplay between murine leukemia virus glycogag, serinc5, and surface glycoprotein governs virus entry, with opposite effects on gammaretroviral and ebolavirus glycoproteins. MBio 2016; 7: [View Article][PubMed]
    [Google Scholar]
  38. Chande A, Cuccurullo EC, Rosa A, Ziglio S, Carpenter S et al. S2 from equine infectious anemia virus is an infectivity factor which counteracts the retroviral inhibitors SERINC5 and SERINC3. Proc Natl Acad Sci USA 2016; 113:13197–13202 [View Article][PubMed]
    [Google Scholar]
  39. Trautz B, Pierini V, Wombacher R, Stolp B, Chase AJ et al. The Antagonism of HIV-1 Nef to SERINC5 Particle Infectivity Restriction Involves the Counteraction of Virion-Associated Pools of the Restriction Factor. J Virol 2016; 90:10915–10927 [View Article][PubMed]
    [Google Scholar]
  40. Shi J, Xiong R, Zhou T, Su P, Zhang X et al. HIV-1 Nef Antagonizes SERINC5 Restriction by Downregulation of SERINC5 via the Endosome/Lysosome System. J Virol 2018; 92: [View Article][PubMed]
    [Google Scholar]
  41. Usami Y, Göttlinger H. HIV-1 Nef responsiveness is determined by Env variable regions involved in trimer association and correlates with neutralization sensitivity. Cell Rep 2013; 5:802–812 [View Article][PubMed]
    [Google Scholar]
  42. Beitari S, Ding S, Pan Q, Finzi A, Liang C. Effect of HIV-1 Env on SERINC5 Antagonism. J Virol 2017; 91: [View Article][PubMed]
    [Google Scholar]
  43. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  44. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999; 41:95–98
    [Google Scholar]
  45. Geuenich S, Goffinet C, Venzke S, Nolkemper S, Baumann I et al. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology 2008; 5:27 [View Article][PubMed]
    [Google Scholar]
  46. Wittmann S, Behrendt R, Eissmann K, Volkmann B, Thomas D et al. Phosphorylation of murine SAMHD1 regulates its antiretroviral activity. Retrovirology 2015; 12:103 [View Article][PubMed]
    [Google Scholar]
  47. Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 2017; 549:394–398 [View Article][PubMed]
    [Google Scholar]
  48. Fackler OT, D'Aloja P, Baur AS, Federico M, Peterlin BM. Nef from human immunodeficiency virus type 1(F12) inhibits viral production and infectivity. J Virol 2001; 75:6601–6608 [View Article][PubMed]
    [Google Scholar]
  49. Pizzato M, Helander A, Popova E, Calistri A, Zamborlini A et al. Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. Proc Natl Acad Sci USA 2007; 104:6812–6817 [View Article][PubMed]
    [Google Scholar]
  50. Pizzato M. MLV glycosylated-Gag is an infectivity factor that rescues Nef-deficient HIV-1. Proc Natl Acad Sci USA 2010; 107:9364–9369 [View Article][PubMed]
    [Google Scholar]
  51. Wain-Hobson S, Vartanian JP, Henry M, Chenciner N, Cheynier R et al. LAV revisited: origins of the early HIV-1 isolates from Institut Pasteur. Science 1991; 252:961–965 [View Article][PubMed]
    [Google Scholar]
  52. Vermeire J, Naessens E, Vanderstraeten H, Landi A, Iannucci V et al. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS One 2012; 7:e50859 [View Article][PubMed]
    [Google Scholar]
  53. Keppler OT, Allespach I, Schüller L, Fenard D, Greene WC et al. Rodent cells support key functions of the human immunodeficiency virus type 1 pathogenicity factor Nef. J Virol 2005; 79:1655–1665 [View Article][PubMed]
    [Google Scholar]
  54. Sharma S, Lewinski MK, Guatelli J. An N-Glycosylated Form of SERINC5 Is Specifically Incorporated into HIV-1 Virions. J Virol 2018; 92: [View Article][PubMed]
    [Google Scholar]
  55. Liu CC, Simonsen CC, Levinson AD. Initiation of translation at internal AUG codons in mammalian cells. Nature 1984; 309:8285 [View Article][PubMed]
    [Google Scholar]
  56. Peri S, Pandey A. A reassessment of the translation initiation codon in vertebrates. Trends Genet 2001; 17:685–687 [View Article][PubMed]
    [Google Scholar]
  57. Cavrois M, de Noronha C, Greene WC. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol 2002; 20:1151–1154 [View Article][PubMed]
    [Google Scholar]
  58. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE. The mouse genome database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res 2015; 43:D726–D736 [View Article]
    [Google Scholar]
  59. Shimoyama M, Laulederkind SJ, de Pons J, Nigam R, Smith JR et al. Exploring human disease using the Rat Genome Database. Dis Model Mech 2016; 9:1089–1095 [View Article][PubMed]
    [Google Scholar]
  60. Esteves PJ, Abrantes J, Baldauf HM, Benmohamed L, Chen Y et al. The wide utility of rabbits as models of human diseases. Exp Mol Med 2018; 50:66 [View Article][PubMed]
    [Google Scholar]
  61. Katzourakis A, Tristem M, Pybus OG, Gifford RJ. Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci USA 2007; 104:6261–6265 [View Article][PubMed]
    [Google Scholar]
  62. Thomas D, Newcomb WW, Brown JC, Wall JS, Hainfeld JF et al. Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis. J Virol 1985; 54:598–607[PubMed]
    [Google Scholar]
  63. Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 2012; 338:524–528 [View Article][PubMed]
    [Google Scholar]
  64. Li S, Ahmad I, Shi J, Wang B, Yu C et al. Murine leukemia virus glycosylated Gag reduces murine SERINC5 protein expression at steady-state levels via endosome/lysosome pathway to counteract the SERINC5 antiretroviral activity. J Virol 2018 [View Article][PubMed]
    [Google Scholar]
  65. Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T et al. PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 2014; 42:W337–W343 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001201
Loading
/content/journal/jgv/10.1099/jgv.0.001201
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error