1887

Abstract

A novel strain, MA3_2.13, was isolated from deep-sea sediment of Madeira Archipelago, Portugal, and characterized using a polyphasic approach. This strain produced dark brown soluble pigments, bronwish black substrate mycelia and an aerial mycelium with yellowish white spores, when grown on GYM 50SW agar. The main respiratory quinones were MK-10(H), MK-10(H) and MK-10(H). Diphosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two glycophospholipids were identified as the main phospholipids. The major cellular fatty acids were iso-C, iso-C, anteiso-C and anteiso-C. Phylogenetic analyses based on 16S rRNA gene showed that strain MA3_2.13 is a member of the genus and was most closely related to NEAU-YY642 (NR_180032.1; 16S rRNA gene similarity 97.9 %), YIM 65188 (NR_044582.1; 16S rRNA gene similarity 97.4 %), 3MP-10 (NR_170412.1; 16S rRNA gene similarity 97.3 %) and NEAU-LZS-5 (NR_133874.1; 16S rRNA gene similarity 97.0 %). Genome pairwise comparisons with closest related type strains retrieved values below the threshold for species delineation suggesting that strain MA3_2.13 represents a new branch within the genus s. Based on these results, strain MA3_2.13 (=DSM 115980=LMG 33094) is proposed as the type strain of a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006341
2024-04-19
2024-05-02
Loading full text...

Full text loading...

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article] [PubMed]
    [Google Scholar]
  2. Lee N, Kim W, Hwang S, Lee Y, Cho S et al. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci Data 2020; 7:1–9 [View Article] [PubMed]
    [Google Scholar]
  3. Kämpfer P. Streptomyces. In Bergey’s Manual of Systematics of Archaea and Bacteria Wiley; 2015 [View Article]
    [Google Scholar]
  4. Hu S, Li K, Zhang Y, Wang Y, Fu L et al. New insights into the threshold values of multi-locus sequence analysis, average nucleotide identity and digital DNA-DNA hybridization in delineating Streptomyces species. Front Microbiol 2022; 13:910277 [View Article] [PubMed]
    [Google Scholar]
  5. Komaki H. Recent progress of reclassification of the genus Streptomyces. Microorganisms 2023; 11:831 [View Article] [PubMed]
    [Google Scholar]
  6. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80:1–43 [View Article] [PubMed]
    [Google Scholar]
  7. Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: progress and prospects. Microbiol Res 2021; 246:126708 [View Article] [PubMed]
    [Google Scholar]
  8. Jones SE, Elliot MA. 'Exploring' the regulation of Streptomyces growth and development. Curr Opin Microbiol 2018; 42:25–30 [View Article] [PubMed]
    [Google Scholar]
  9. Kamjam M, Sivalingam P, Deng Z, Hong K. Deep sea Actinomycetes and their secondary metabolites. Front Microbiol 2017; 8:760 [View Article] [PubMed]
    [Google Scholar]
  10. Donald L, Pipite A, Subramani R, Owen J, Keyzers RA et al. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol Res 2022; 13:418–465 [View Article]
    [Google Scholar]
  11. Ribeiro I, Antunes JT, Alexandrino DAM, Tomasino MP, Almeida E et al. Actinobacteria from Arctic and Atlantic deep-sea sediments-biodiversity and bioactive potential. Front Microbiol 2023; 14:1158441 [View Article] [PubMed]
    [Google Scholar]
  12. Albuquerque P, Ribeiro I, Correia S, Mucha AP, Tamagnini P et al. Complete genome sequence of two deep-sea Streptomyces isolates from Madeira Archipelago and evaluation of their biosynthetic potential. Mar Drugs 2021; 19:621 [View Article] [PubMed]
    [Google Scholar]
  13. Smibert R. Phenotypic characteization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  14. Reiner K. Catalase Test Protocol American Society for Microbiology; 2010 pp 1–6
    [Google Scholar]
  15. Centore P. Centroids for the ISCC-NBS colour system 2 colour specifications; 2016
  16. Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species1. Int J Syst Evol Microbiol 1966; 16:313–340 [View Article]
    [Google Scholar]
  17. Waksman SA. The Actinomycetes. In Classification, Identification and Descriptions of Genera and Species vol 2 London: Baillière, Tindall & Cox, Ltd; 1961 p 363
    [Google Scholar]
  18. Williams S, Goodfellow M, Alderson G, Wellington E, Sneath P et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  19. Schumann P. Peptidoglycan structure. In Methods in Microbiology vol 38 Elsevier; 2011 pp 101–129 [View Article]
    [Google Scholar]
  20. Kämpfer P. The family Streptomycetaceae, part I: taxonomy. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes vol 3 New York, NY: Springer; 2006 pp 538–604 [View Article]
    [Google Scholar]
  21. Ribeiro I, Girão M, Alexandrino DAM, Ribeiro T, Santos C et al. Diversity and bioactive potential of actinobacteria isolated from a coastal marine sediment in Northern Portugal. Microorganisms 2020; 8:1691 [View Article] [PubMed]
    [Google Scholar]
  22. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  23. Schrempf H. The family Streptomycetaceae, part II: molecular biology. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes vol 3 New York, NY: Springer; 2006 pp 605–622 [View Article]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  26. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  27. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  28. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  32. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  33. He H, Liu C, Zhao J, Li W, Pan T et al. Streptomyces zhaozhouensis sp. nov., an actinomycete isolated from candelabra aloe (Aloe arborescens Mill). Int J Syst Evol Microbiol 2014; 64:1096–1101 [View Article] [PubMed]
    [Google Scholar]
  34. Li J, Zhao G-Z, Qin S, Zhu W-Y, Xu L-H et al. Streptomyces sedi sp. nov., isolated from surface-sterilized roots of Sedum sp. Int J Syst Evol Microbiol 2009; 59:1492–1496 [View Article] [PubMed]
    [Google Scholar]
  35. Han C, Yu Z, Zhao J, Shi H, Hu J et al. Streptomyces triticagri sp. nov. and Streptomyces triticirhizae sp. nov., two novel Actinobacteria isolated from the rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2020; 70:126–138 [View Article]
    [Google Scholar]
  36. Klykleung N, Yuki M, Kudo T, Ohkuma M, Phongsopitanun W et al. Streptomyces mimosae sp. nov., an endophytic actinomycete isolated from the root of Mimosa pudica in Thailand. Int J Syst Evol Microbiol 2020; 70:3316–3322 [View Article] [PubMed]
    [Google Scholar]
  37. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006341
Loading
/content/journal/ijsem/10.1099/ijsem.0.006341
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error