1887

Abstract

Two Gram-stain-negative bacterial strains, R39 and R73, were isolated from the rhizosphere soil of the selenium hyperaccumulator in China. Strain R39 transformed selenite into elemental and volatile selenium, whereas strain R73 transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39 belonged to the genus , while strain R73 belonged to the genus . Strain R39 (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to LMG 26219 and LMG 3441, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73 (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to ATCC 51602 with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73 within the genus through phylogenomic analyses. The ANI and digital DNA–DNA hybridization values between strains R73 and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39 and strain R73 from their closely related species. Based on the polyphasic analyses, strain R39 and strain R73 represent novel species of the genera and , respectively, for which the names sp. nov. (type strain R39=GDMCC 1.3843=JCM 36009) and sp. nov. (type strain R73=GDMCC 1.3636=JCM 35850) are proposed.

Funding
This study was supported by the:
  • Special Fund for Agro-scientific Research in the Public Interest (Award 201303106)
    • Principle Award Recipient: YanbinGuo
  • Special Fund for Key Science & Technology Program in Xinjiang Province (Award No. 2022B02053 & 2022B02021)
    • Principle Award Recipient: YanbinGuo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006334
2024-04-15
2024-04-29
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I. Achromobacter gen. nov. and Achromobacter xylosoxidans (ex Yabuuchi and Ohyama 1971) nom. rev. Int J Syst Bacteriol 1981; 31:477–478 [View Article]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Coenye T, Vancanneyt M, Falsen E, Swings J, Vandamme P. Achromobacter insolitus sp. nov. and Achromobacter spanius sp. nov., from human clinical samples. Int J Syst Evol Microbiol 2003; 53:1819–1824 [View Article] [PubMed]
    [Google Scholar]
  4. Gomila M, Tvrzová L, Teshim A, Sedláček I, González-Escalona N et al. Achromobacter marplatensis sp. nov., isolated from a pentachlorophenol-contaminated soil. Int J Syst Evol Microbiol 2011; 61:2231–2237 [View Article] [PubMed]
    [Google Scholar]
  5. Vandamme P, Moore ERB, Cnockaert M, De Brandt E, Svensson-Stadler L et al. Achromobacter animicus sp. nov., Achromobacter mucicolens sp. nov., Achromobacter pulmonis sp. nov. and Achromobacter spiritinus sp. nov., from human clinical samples. Syst Appl Microbiol 2013; 36:1–10 [View Article] [PubMed]
    [Google Scholar]
  6. Vandamme P, Moore ERB, Cnockaert M, Peeters C, Svensson-Stadler L et al. Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aegrifaciens sp. nov., Achromobacter anxifer sp. nov. and Achromobacter dolens sp. nov., respectively. Syst Appl Microbiol 2013; 36:474–482 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang ZH, Fan XY, Gao X, Zhang XH. Achromobacter sediminum sp. nov., isolated from deep subseafloor sediment of South Pacific Gyre. Int J Syst Evol Microbiol 2014; 64:2244–2249 [View Article]
    [Google Scholar]
  8. Vandamme PA, Peeters C, Inganäs E, Cnockaert M, Houf K et al. Taxonomic dissection of Achromobacter denitrificans Coenye et al. 2003 and proposal of Achromobacter agilis sp. nov., nom. rev., Achromobacter pestifer sp. nov., nom. rev., Achromobacter kerstersii sp. nov. and Achromobacter deleyi sp. nov. Int J Syst Evol Microbiol 2016; 66:3708–3717 [View Article] [PubMed]
    [Google Scholar]
  9. Dumolin C, Peeters C, Ehsani E, Tahon G, De Canck E et al. Achromobacter veterisilvae sp. nov., from a mixed hydrogen-oxidizing bacteria enrichment reactor for microbial protein production. Int J Syst Evol Microbiol 2020; 70:530–536 [View Article] [PubMed]
    [Google Scholar]
  10. Kuncharoen N, Muramatsu Y, Shibata C, Kamakura Y, Nakagawa Y et al. Achromobacter aloeverae sp. nov., isolated from the root of Aloe vera (L.) Burm.f. Int J Syst Evol Microbiol 2017; 67:37–41 [View Article] [PubMed]
    [Google Scholar]
  11. Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL. Achromobacter infections and treatment options. Antimicrob Agents Chemother 2020; 64:e01025–20 [View Article]
    [Google Scholar]
  12. Liu L, Coenye T, Burns JL, Whitby PW, Stull TL et al. Ribosomal DNA-directed PCR for identification of Achromobacter (Alcaligenes) xylosoxidans recovered from sputum samples from cystic fibrosis patients. J Clin Microbiol 2002; 40:1210–1213 [View Article] [PubMed]
    [Google Scholar]
  13. Cools P, Ho E, Vranckx K, Schelstraete P, Wurth B et al. Epidemic Achromobacter xylosoxidans strain among Belgian cystic fibrosis patients and review of literature. BMC Microbiol 2016; 16:122 [View Article] [PubMed]
    [Google Scholar]
  14. van Hal S, Stark D, Marriott D, Harkness J. Achromobacter xylosoxidans subsp. xylosoxidans prosthetic aortic valve infective endocarditis and aortic root abscesses. J Med Microbiol 2008; 57:525–527 [View Article] [PubMed]
    [Google Scholar]
  15. Tena D, González-Praetorius A, Pérez-Balsalobre M, Sancho O, Bisquert J. Urinary tract infection due to Achromobacter xylosoxidans: report of 9 cases. Scand J Infect Dis 2008; 40:84–87 [View Article] [PubMed]
    [Google Scholar]
  16. Krause ML, Sohail MR, Patel R, Wittich CM. Achromobacter piechaudii bloodstream infection in an immunocompetent host. Am J Case Rep 2012; 13:265–267 [View Article] [PubMed]
    [Google Scholar]
  17. Su J, Liang D, Lian T. Comparison of denitrification performance by bacterium Achromobacter sp. A14 under different electron donor conditions. Chem Eng J 2018; 333:320–326 [View Article]
    [Google Scholar]
  18. Abdel-Rahman HM, Salem AA, Moustafa MMA, El-Garhy HAS. A novice Achromobacter sp. EMCC1936 strain acts as a plant-growth-promoting agent. Acta Physiol Plant 2017; 39:61 [View Article]
    [Google Scholar]
  19. Cai L, Rensing C, Li X, Wang G. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol 2009; 83:715–725 [View Article]
    [Google Scholar]
  20. Wan N, Gu J-D, Yan Y. Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. Int Biodeterior Biodegradation 2007; 59:90–96 [View Article]
    [Google Scholar]
  21. Quan X, Shi H, Zhang Y, Wang J, Qian Y. Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. Sep Purif Technol 2004; 34:97–103 [View Article]
    [Google Scholar]
  22. Ferragut C, Izard D, Gavini F, Lefebvre B, Leclerc H. Buttiauxella, a new genus of the family Enterobacteraceae. Zentralbl Bakteriol Mikrobiol Hyg A 1981; 2:33–44 [View Article]
    [Google Scholar]
  23. Müller HE, Brenner DJ, Fanning GR, Grimont PA, Kämpfer P. Emended description of Buttiauxella agrestis with recognition of six new species of Buttiauxella and two new species of Kluyvera: Buttiauxella ferragutiae sp. nov., Buttiauxella gaviniae sp. nov., Buttiauxella brennerae sp. nov., Buttiauxella izardii sp. nov., Buttiauxella noackiae sp. nov., Buttiauxella warmboldiae sp. nov., Kluyvera cochleae sp. nov., and Kluyvera georgiana sp. nov. Int J Syst Bacteriol 1996; 46:50–63 [View Article] [PubMed]
    [Google Scholar]
  24. Shi P, Huang H, Wang Y, Luo H, Wu B et al. A novel phytase gene appA from Buttiauxella sp. GC21 isolated from grass carp intestine. Aquaculture 2008; 275:70–75 [View Article]
    [Google Scholar]
  25. Dersjant-Li Y, Dusel G. Increasing the dosing of a Buttiauxella phytase improves phytate degradation, mineral, energy, and amino acid digestibility in weaned pigs fed a complex diet based on wheat, corn, soybean meal, barley, and rapeseed meal1. J Anim Sci 2019; 97:2524–2533 [View Article] [PubMed]
    [Google Scholar]
  26. Bello A, Korver DR. Long-term effects of Buttiauxella sp. phytase on performance, eggshell quality, apparent ileal Ca and P digestibility, and bone properties of white egg layers. Poult Sci 2019; 98:4848–4859 [View Article] [PubMed]
    [Google Scholar]
  27. Dersjant-Li Y, Plumstead P, Awati A, Remus J. Productive performance of commercial growing and finishing pigs supplemented with a Buttiauxella phytase as a total replacement of inorganic phosphate. Anim Nutr 2018; 4:351–357 [View Article] [PubMed]
    [Google Scholar]
  28. Zeng Z, Li Q, Tian Q, Zhao P, Xu X et al. Super high dosing with a novel Buttiauxella phytase continuously improves growth performance, nutrient digestibility, and mineral status of weaned pigs. Biol Trace Elem Res 2015; 168:103–109 [View Article] [PubMed]
    [Google Scholar]
  29. Wu K, Luo J, Li J, An Q, Yang X et al. Endophytic bacterium Buttiauxella sp. SaSR13 improves plant growth and cadmium accumulation of hyperaccumulator Sedum alfredii. Environ Sci Pollut Res Int 2018; 25:21844–21854 [View Article] [PubMed]
    [Google Scholar]
  30. Reich HJ, Hondal RJ. Why nature chose selenium. ACS Chem Biol 2016; 11:821–841 [View Article] [PubMed]
    [Google Scholar]
  31. Nigam SN, McConnell WB. Seleno amino compounds from Astragalus bisculcatus. Isolation and identification of gamma-L-glutamyl-Se-methyl-seleno-L-cysteine and Se-methylseleno-L-cysteine. Biochim Biophys Acta 1969; 192:185–190 [View Article] [PubMed]
    [Google Scholar]
  32. Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ et al. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 2010; 153:1630–1652 [View Article] [PubMed]
    [Google Scholar]
  33. Yuan L, Zhu Y, Lin Z-Q, Banuelos G, Li W et al. A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS One 2013; 8:e65615 [View Article] [PubMed]
    [Google Scholar]
  34. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP et al. Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 2006; 142:124–134 [View Article] [PubMed]
    [Google Scholar]
  35. Di Gregorio S, Lampis S, Vallini G. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 2005; 31:233–241 [View Article] [PubMed]
    [Google Scholar]
  36. Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB et al. Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range. Am J Bot 2011; 98:1139–1147 [View Article] [PubMed]
    [Google Scholar]
  37. Tong X, Yuan L, Luo L, Yin X. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis. Sci World J 2014; 2014:108562 [View Article] [PubMed]
    [Google Scholar]
  38. Lindblom SD, Fakra SC, Landon J, Schulz P, Tracy B et al. Inoculation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi affects growth and selenium accumulation. Planta 2013; 237:717–729 [View Article] [PubMed]
    [Google Scholar]
  39. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  40. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  41. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 50:W276–W279 [View Article] [PubMed]
    [Google Scholar]
  42. Saitou N, Nei M. The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol and Evol 1987; 4:406–425
    [Google Scholar]
  43. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  44. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol and Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  45. Spilker T, Vandamme P, Lipuma JJ. A multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species. J Clin Microbiol 2012; 50:3010–3015 [View Article] [PubMed]
    [Google Scholar]
  46. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  47. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article]
    [Google Scholar]
  48. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  49. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 2023; 51:D678–D689 [View Article] [PubMed]
    [Google Scholar]
  50. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  51. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  52. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  53. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  54. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  55. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  56. Naum M, Brown EW, Mason-Gamer RJ. Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae?. J Mol Evol 2008; 66:630–642 [View Article] [PubMed]
    [Google Scholar]
  57. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  58. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  59. Peng T, Lin J, Xu Y-Z, Zhang Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J 2016; 10:2048–2059 [View Article] [PubMed]
    [Google Scholar]
  60. Ojeda JJ, Merroun ML, Tugarova AV, Lampis S, Kamnev AA et al. Developments in the study and applications of bacterial transformations of selenium species. Crit Rev Biotechnol 2020; 40:1250–1264 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006334
Loading
/content/journal/ijsem/10.1099/ijsem.0.006334
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error