1887

Abstract

A novel mesophilic, hydrogenotrophic methanogen, strain CWC-04, was obtained from a sediment sample extracted from a gravity core retrieved at station 22 within the KP-9 area off the southwestern coast of Taiwan during the ORIII-1368 cruise in 2009. Cells of strain CWC-04 were rod-shaped, 1.4–2.9 µm long by 0.5–0.6 µm wide, and occurred singly. Strain CWC-04utilized formate, H/CO, 2-propanol/CO or 2-butanol/CO as catabolic substrates. The optimal growth conditions were 42 °C, 0.17 M NaCl and pH 5.35. The genomic DNA G+C content calculated from the genome sequence of strain CWC-04 was 46.19 mol%. Phylogenetic analysis of 16S rRNA gene revealed that strain CWC-04 is affiliated with the genus . The 16S rRNA gene sequences similarities within strains MRE50, SANAE and HZ254 were 93.7, 93.0 and 91.3 %, respectively. In addition, the optical density of CWC-04 culture dropped abruptly upon entering the late-log growth phase, with virus-like particles (150 nm in diameter) being observed on and around the cells. This observation suggests that strain CWC-04 harbours a lytic virus. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CWC-04 represents a novel species of a novel genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is CWC-04 (=BCRC AR10050=NBRC 113165).

Funding
This study was supported by the:
  • Sanming University, Sanming, Fujian (Award 20YG09)
    • Principle Award Recipient: ChenSheng-Chung
  • Ministry of Science and Technology, Taiwan (Award MOST103/104/105/106/107-3113-M-005-001)
    • Principle Award Recipient: Mei-ChinLai
  • Central Geological Survey, Ministry of Economic Affairs (Award 99-5226904000-04-03)
    • Principle Award Recipient: Mei-ChinLai
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006322
2024-04-18
2024-05-01
Loading full text...

Full text loading...

References

  1. Kvenvolden KA. Gas hydrates—geological perspective and global change. Rev Geophys 1993; 31:173–187 [View Article]
    [Google Scholar]
  2. Milkov AV. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?. Earth-Sci Rev 2004; 66:183–197 [View Article]
    [Google Scholar]
  3. Barnes R, Goldberg E. Methane production and consumption in anoxic marine sediments. Geology 1976; 4:297–300 [View Article]
    [Google Scholar]
  4. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000; 407:623–626 [View Article] [PubMed]
    [Google Scholar]
  5. Borowski WS, Paull CK, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 1996; 24:655–658 [View Article]
    [Google Scholar]
  6. Lin AT, Liu C-S, Lin C-C, Schnurle P, Chen G-Y et al. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan. Mar Geol 2008; 255:186–203 [View Article]
    [Google Scholar]
  7. Lin C-C, Tien-Shun Lin A, Liu C-S, Chen G-Y, Liao W-Z et al. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Mar Pet Geol 2009; 26:1118–1131 [View Article]
    [Google Scholar]
  8. Chi W-C, Reed DL, Liu C-S, Lundberg N. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terr Atmos Ocean Sci 1998; 9:779–794 [View Article]
    [Google Scholar]
  9. Schnürle P, Liu C-S, Lin AT, Lin S. Structural controls on the formation of BSR over a diapiric anticline from a dense MCS survey offshore southwestern Taiwan. Mar Pet Geol 2011; 28:1932–1942 [View Article]
    [Google Scholar]
  10. Liu C-S, Schnurle P, Wang Y, Chung S-H, Chen S-C et al. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terr Atmos Ocean Sci 2006; 17:615 [View Article]
    [Google Scholar]
  11. Chen S-C, Hsu S-K, Wang Y, Chung S-H, Chen P-C et al. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J Asian Earth Sci 2014; 92:201–214 [View Article]
    [Google Scholar]
  12. Lin S, Hsieh W-C, Lim YC, Yang TF, Liu C-S et al. Methane migration and its influence on sulfate reduction in the good weather ridge region, south China sea continental margin sediments. Terr Atmos Ocean Sci 2006; 17:883 [View Article]
    [Google Scholar]
  13. Chuang P-C, Yang TF, Lin S, Lee H-F, Lan TF et al. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terr Atmos Ocean Sci 2006; 17:903 [View Article]
    [Google Scholar]
  14. Yang TF, Chuang P-C, Lin S, Chen J-C, Wang Y et al. Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples. Terr Atmos Ocean Sci 2006; 17:933 [View Article]
    [Google Scholar]
  15. Chuang PC, Dale AW, Wallmann K, Haeckel M, Yang TF et al. Relating sulfate and methane dynamics to geology: accretionary prism offshore SW Taiwan. Geochem Geophys Geosyst 2013; 14:2523–2545 [View Article]
    [Google Scholar]
  16. Chuang P‐C., Yang T, Hong W‐L., Lin S, Sun CH. et al. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids 2010; 10:497–510 [View Article]
    [Google Scholar]
  17. Lim YC, Lin S, Yang TF, Chen Y-G, Liu C-S. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Mar Pet Geol 2011; 28:1829–1837 [View Article]
    [Google Scholar]
  18. Sower K, Noll K. Techniques for anaerobic growth. Archaea: A Laboratory Manual 1995; 215–48
    [Google Scholar]
  19. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article] [PubMed]
    [Google Scholar]
  20. Miller TL, Wolin MJ. A serum bottle modification of the hungate technique for cultivating obligate anaerobes. Appl Microbiol 1974; 27:985–987 [View Article] [PubMed]
    [Google Scholar]
  21. Hungate R. Chapter IV a roll tube method for cultivation of strict Anaerobes. In Methods in Microbiology Elsevier; 1969 pp 117–132
    [Google Scholar]
  22. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963; 238:2882–2886 [PubMed]
    [Google Scholar]
  23. Ferguson TJ, Mah RA. Isolation and characterization of an H(2)-oxidizing thermophilic methanogen. Appl Environ Microbiol 1983; 45:265–274 [View Article] [PubMed]
    [Google Scholar]
  24. Weng C-Y, Chen S-C, Lai M-C, Wu S-Y, Lin S et al. Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int J Syst Evol Microbiol 2015; 65:1044–1049 [View Article] [PubMed]
    [Google Scholar]
  25. Chen S-C, Chen M-F, Lai M-C, Weng C-Y, Wu S-Y et al. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int J Syst Evol Microbiol 2015; 65:2141–2147 [View Article] [PubMed]
    [Google Scholar]
  26. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci 1992; 89:5685–5689 [View Article] [PubMed]
    [Google Scholar]
  27. Utsumi M, Belova SE, King GM, Uchiyama H. Phylogenetic comparison of methanogen diversity in different wetland soils. J Gen Appl Microbiol 2003; 49:75–83 [View Article] [PubMed]
    [Google Scholar]
  28. Gray JP, Herwig RP. Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 1996; 62:4049–4059 [View Article] [PubMed]
    [Google Scholar]
  29. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46:327–338 [View Article] [PubMed]
    [Google Scholar]
  30. Lai M-C, Shih C-J. Characterization of Methanococcus voltaei strain P2F9701a: a new methanogen isolated from estuarine environment. Curr Microbiol 2001; 42:432–437 [View Article] [PubMed]
    [Google Scholar]
  31. Lai M-C, Chen S-C. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int J Syst Evol Microbiol 2001; 51:1873–1880 [View Article] [PubMed]
    [Google Scholar]
  32. Chen I-M, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article] [PubMed]
    [Google Scholar]
  33. Jarrell KF, Faguy D, Hebert AM, Kalmokoff ML. A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can J Microbiol 1992; 38:65–68 [View Article] [PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  35. Sakai S, Conrad R, Liesack W, Imachi H. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil. Int J Syst Evol Microbiol 2010; 60:2918–2923 [View Article] [PubMed]
    [Google Scholar]
  36. Sakai S, Imachi H, Hanada S, Ohashi A, Harada H et al. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage “Rice Cluster I”, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 2008; 58:929–936 [View Article] [PubMed]
    [Google Scholar]
  37. Z, Lu Y. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil. PLoS One 2012; 7:e35279 [View Article] [PubMed]
    [Google Scholar]
  38. Liu Y. Taxonomy of methanogens. Hand Hydro Lip Microbiol 2010 [View Article]
    [Google Scholar]
  39. Chen S-C, Lai S-J, You Y-T, Shih C-J, Wu Y-C et al. Complete genome sequence of Methanofollis aquaemaris BCRC 16166T, isolated from a marine aquaculture fishpond. Microbiol Resour Announc 2022; 11:e0074322 [View Article] [PubMed]
    [Google Scholar]
  40. Chen S-C, Lai S-J, You Y-T, Shih C-J, Wu Y-C et al. Draft genomes of Methanocalculus taiwanensis P2F9704aT and Methanocalculus chunghsingensis K1F9705bT, hydrogenotrophic methanogens belonging to the family Methanocalculaceae. Microbiol Resour Announc 2022; 11:e0079222 [View Article] [PubMed]
    [Google Scholar]
  41. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  42. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  43. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  44. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014; 42:D560–D567 [View Article] [PubMed]
    [Google Scholar]
  45. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019; 47:D666–D677 [View Article] [PubMed]
    [Google Scholar]
  46. Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC et al. Genomes OnLine Database (GOLD) v.8: overview and updates. Nucleic Acids Res 2021; 49:D723–D733 [View Article] [PubMed]
    [Google Scholar]
  47. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  48. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  49. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article] [PubMed]
    [Google Scholar]
  50. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  51. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  52. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  53. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  54. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  55. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  56. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  57. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  58. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:1–8 [View Article] [PubMed]
    [Google Scholar]
  59. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  60. Luo C, Rodriguez-r LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  61. Whitman WB, Boone DR, Koga Y, Keswani J. Taxonomy of methanogenic archaea. In Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd. edn New York: Springer; 2001 pp 211–213
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006322
Loading
/content/journal/ijsem/10.1099/ijsem.0.006322
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error